首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42274篇
  免费   2462篇
  国内免费   1729篇
电工技术   657篇
综合类   1729篇
化学工业   13200篇
金属工艺   4288篇
机械仪表   2931篇
建筑科学   2016篇
矿业工程   529篇
能源动力   1460篇
轻工业   1350篇
水利工程   114篇
石油天然气   291篇
武器工业   128篇
无线电   4169篇
一般工业技术   10825篇
冶金工业   834篇
原子能技术   459篇
自动化技术   1485篇
  2024年   69篇
  2023年   524篇
  2022年   696篇
  2021年   1003篇
  2020年   903篇
  2019年   875篇
  2018年   935篇
  2017年   1238篇
  2016年   1179篇
  2015年   1356篇
  2014年   1827篇
  2013年   2739篇
  2012年   2408篇
  2011年   3403篇
  2010年   2463篇
  2009年   2728篇
  2008年   2538篇
  2007年   2775篇
  2006年   2488篇
  2005年   1978篇
  2004年   1827篇
  2003年   1594篇
  2002年   1467篇
  2001年   1167篇
  2000年   976篇
  1999年   821篇
  1998年   729篇
  1997年   687篇
  1996年   486篇
  1995年   431篇
  1994年   356篇
  1993年   301篇
  1992年   315篇
  1991年   307篇
  1990年   239篇
  1989年   184篇
  1988年   90篇
  1987年   67篇
  1986年   59篇
  1985年   68篇
  1984年   46篇
  1983年   19篇
  1982年   32篇
  1981年   10篇
  1980年   10篇
  1979年   5篇
  1978年   7篇
  1976年   11篇
  1975年   9篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 122 毫秒
1.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e. allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens. The present study evaluates the feasibility of microbially induced calcium carbonate precipitation (MICP) technique to mitigate wind-induced erosion of calcareous desert sand (Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36 °C to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina (S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing (in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure (including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope (SEM), and energy-dispersive X-ray spectroscope (EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in 15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust, bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.  相似文献   
2.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
3.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
4.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
5.
《Ceramics International》2022,48(13):18151-18156
The electrical properties and domain reversal in BiFeO3 ferroelectric films were studied using sandwiched heterostructures and piezoresponse force microscopy. A robust polarization state was observed, combined with a switchable domain pattern and a remanent polarization of approximately 100 μC cm?2. In addition, domain reversal was explored using scanning probe microscopy. The results show that dipoles could be reversed along the direction of the electric field under a negative tip bias, leading to carrier gathering near the domain walls. The enhanced conductivity near the domain walls was owing to the discontinuous polarization boundary conditions. In addition, typical diode-like current transport properties are sensitive to various temperature conditions, which is attributed to the Schottky barriers at the contact interface. These findings extend the current understanding of domain texture reversal in ferroelectric films and shed light on their potential applications for future ferroelectric random-access memory operations over a wide temperature range.  相似文献   
6.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
7.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
8.
《Ceramics International》2022,48(18):26055-26062
Indo-Pacific glass beads are produced by the drawn technique, which originates from South Asia, and their chemical compositions are unique in South and Southeast Asia. However, a small number of Indo-Pacific beads with Sassanian glass compositions are excavated in Asia and Africa after the 3rd c. CE, and their production sites in South/Southeast Asia or in the Sassanian region remain controversial. In this study, 15 drawn glass beads with various colours from Astana necropolis (ca. the 4th-8th c. CE) in Xinjiang, northwest China were investigated by using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), Scanning Electron Microscope, Raman spectroscopy and visible to near-infrared spectroscopy to characterize the production technology and origins. The results show that most Astana glass beads share similar chemical compositions with the glassware from Veh Arda?īr, a famous Sasanian site. Furthermore, Sasanian glass compositions predominate in Indo-Pacific beads in Xinjiang during the 4th-8th c. CE, while popular glass recipes in contemporary South/Southeast Asia are infrequently found; thus, it is deduced that the drawn method should have been mastered by Sasanian craftsmen. Moreover, the cobalt materials in Sasanian glass were imported from further western regions and changed over time. The popular Sasanian glass across central Eurasia reflects the trade monopoly of Sasanian in West and Central Asia, and the land glass bead trade is distinct from the contemporary maritime trade in the Indian and Pacific Oceans.  相似文献   
9.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
10.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号