首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68458篇
  免费   5640篇
  国内免费   3381篇
电工技术   1370篇
技术理论   2篇
综合类   5124篇
化学工业   19574篇
金属工艺   6202篇
机械仪表   1917篇
建筑科学   5509篇
矿业工程   1929篇
能源动力   1102篇
轻工业   8575篇
水利工程   1249篇
石油天然气   4832篇
武器工业   660篇
无线电   2400篇
一般工业技术   7373篇
冶金工业   4256篇
原子能技术   364篇
自动化技术   5041篇
  2024年   166篇
  2023年   696篇
  2022年   1524篇
  2021年   1837篇
  2020年   1745篇
  2019年   1536篇
  2018年   1577篇
  2017年   2162篇
  2016年   2337篇
  2015年   2505篇
  2014年   3401篇
  2013年   3481篇
  2012年   4492篇
  2011年   5007篇
  2010年   3742篇
  2009年   3952篇
  2008年   3334篇
  2007年   4830篇
  2006年   4507篇
  2005年   4107篇
  2004年   3465篇
  2003年   3102篇
  2002年   2664篇
  2001年   2255篇
  2000年   1820篇
  1999年   1604篇
  1998年   1280篇
  1997年   922篇
  1996年   800篇
  1995年   666篇
  1994年   553篇
  1993年   355篇
  1992年   326篇
  1991年   205篇
  1990年   143篇
  1989年   106篇
  1988年   58篇
  1987年   46篇
  1986年   30篇
  1985年   24篇
  1984年   17篇
  1983年   14篇
  1982年   13篇
  1981年   12篇
  1980年   14篇
  1979年   9篇
  1978年   4篇
  1976年   5篇
  1973年   4篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
2.
3.
《Ceramics International》2022,48(7):9413-9425
Artificial bone fillers are essentially required for repairing bone defects, and developing the fillers with synergistic biocompatibility and anti-bacterial activity persists as one of the critical challenges. In this work, a new agarose/gadolinium-doped hydroxyapatite filler with three-dimensional porous structures was fabricated. For the composite filler, agarose provides three-dimensional skeleton and endows porosity, workability, and high specific surface area, hydroxyapatite (HA) offers the biocompatibility, and the rare earth element gadolinium (Gd) acts as the antibacterial agent. X-ray photoelectron spectroscopy detection showed the doping of Gd in HA lattice with the formation of Gd-HA interstitial solid solution. Attenuated total reflection Fourier transform infrared spectroscopy imaging suggested chemical interactions between agarose and Gd-HA, and the physical structure of agarose was tuned by the Gd-doped HA. Cytotoxicity testing and alizarin red staining experiments using mouse pro-osteoblasts (MC3T3-E1) revealed remarkable bioactivity and osteogenic properties of the composite fillers, and proliferation and growth rates of the cells increased in proportion to Gd content in the composites. Antibacterial testing using the gram-positive bacteria S. aureus and the gram-negative bacteria E. coli indicated promising antibacterial properties of the fillers. Meanwhile, the antibacterial properties of composite filles were enhanced with the increase of Gd content. The antibacterial fillers with porous structure and excellent physicomechanical properties show inspiring potential for bone defect repair.  相似文献   
4.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
5.
《Ceramics International》2022,48(1):769-775
Brittle materials generally exhibit size effects, and the mechanical properties of these materials degrade significantly with an increase in size. However, the mathematical law governing the attenuation degree of mechanical properties with the increase in size is still unknown. In this study, maximum loads of differently sized ceramic test strips were subjected to three point bending tests under two working conditions of equal spans and span amplifications, respectively. Subsequently, the theoretical maximum loads of materials were calculated using the finite element method (FEM). By calculating the difference between the calculated values and the actual maximum loads, the attenuation of mechanical properties of ceramic samples were observed. The results show that the theoretical mechanical properties and the performance attenuation caused by the size effect tend to increase according to the following equation: y=ax3+bx2+cx+d. Therefore, mechanical properties and performance attenuation of any sample exhibiting a size within the experimental range can be predicted by a mathematical law, which was obtained through mechanical tests results of four samples with different sizes. The obtained mathematical law holds great significance for predicting the mechanical properties of materials under size effects.  相似文献   
6.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
7.
Ni-based alloys are believed to be the most suitable brazing fillers for SiC ceramic application in a nuclear environment. However, graphite, which severely deteriorates the mechanical property of the joint, is inevitable when Ni reacts with SiC. In this paper, Different amounts of Zr powders are mixed with Inconel 625 powders to braze SiC at 1400 °C. When Zr addition reaches 40 wt%, the brazed seam confirms the absence of graphite. This research proves that Zr can avoid the graphite’s formation by suppressing Ni’s activity. The room-temperature shear strength of the joint with graphite’s absence is tested to be 81.97 MPa, which is almost three times higher than that of the joint with graphite. The interfacial reaction process and mechanism of the SiC joint are investigated and explained in this paper using thermodynamic calculations.  相似文献   
8.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
9.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
10.
Antibiotic resistance is a growing problem for public health and associated with increasing economic costs and mortality rates. Silver and silver-related compounds have been used for centuries due to their antimicrobial properties. In this work, we show that 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate/NHC*-Ag-OAc (SBC3) is a reversible, high affinity inhibitor of E. coli thioredoxin reductase (TrxR; Ki=10.8±1.2 nM). Minimal inhibition concentration (MIC) tests with different E. coli and P. aeruginosa strains demonstrated that SBC3 can efficiently inhibit bacterial cell growth, especially in combination with established antibiotics like gentamicin. Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号