首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   14篇
  国内免费   7篇
电工技术   2篇
综合类   4篇
化学工业   30篇
金属工艺   9篇
机械仪表   3篇
矿业工程   2篇
能源动力   10篇
轻工业   4篇
无线电   60篇
一般工业技术   54篇
原子能技术   2篇
自动化技术   5篇
  2023年   5篇
  2022年   9篇
  2021年   7篇
  2020年   10篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   18篇
  2013年   16篇
  2012年   16篇
  2011年   16篇
  2010年   11篇
  2009年   13篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
2.
Organic devices like organic light emitting diodes (OLEDs) or organic solar cells degrade fast when exposed to ambient air. Hence, thin-films acting as permeation barriers are needed for their protection. Atomic layer deposition (ALD) is known to be one of the best technologies to reach barriers with a low defect density at gentle process conditions. As well, ALD is reported to be one of the thinnest barrier layers, with a critical thickness – defining a continuous barrier film – as low as 5–10 nm for ALD processed Al2O3. In this work, we investigate the barrier performance of Al2O3 films processed by ALD at 80 °C with trimethylaluminum and ozone as precursors. The coverage of defects in such films is investigated on a 5 nm thick Al2O3 film, i.e. below the critical thickness, on calcium using atomic force microscopy (AFM). We find for this sub-critical thickness regime that all spots giving raise to water ingress on the 20 × 20 μm2 scan range are positioned on nearly flat surface sites without the presence of particles or large substrate features. Hence below the critical thickness, ALD leaves open or at least weakly covered spots even on feature-free surface sites. The thickness dependent performance of these barrier films is investigated for thicknesses ranging from 15 to 100 nm, i.e. above the assumed critical film thickness of this system. To measure the barrier performance, electrical calcium corrosion tests are used in order to measure the water vapor transmission rate (WVTR), electrodeposition is used in order to decorate and count defects, and dark spot growth on OLEDs is used in order to confirm the results for real devices. For 15–25 nm barrier thickness, we observe an exponential decrease in defect density with barrier thickness which explains the likewise observed exponential decrease in WVTR and OLED degradation rate. Above 25 nm, a further increase in barrier thickness leads to a further exponential decrease in defect density, but an only sub-exponential decrease in WVTR and OLED degradation rate. In conclusion, the performance of the thin Al2O3 permeation barrier is dominated by its defect density. This defect density is reduced exponentially with increasing barrier thickness for alumina thicknesses of up to at least 25 nm.  相似文献   
3.
Copper films with (1 1 1) texture are of crucial importance in integrated circuit interconnects. We have deposited strongly (1 1 1)-textured thin films of copper by atomic layer deposition (ALD) using [2,2,6,6-tetramethyl-3,5-heptadionato] Cu(II), Cu(thd)2, as the precursor. The dependence of the microstructure of the films on ALD conditions, such as the number of ALD cycles and the deposition temperature was studied by X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy. Analysis of (1 1 1)-textured films shows the presence of twin planes in the copper grains throughout the films. SEM shows a labyrinthine structure of highly connected, large grains developing as film thickness increases. This leads to low resistivity and suggests high resistance to electromigration.  相似文献   
4.
Experiments are conducted with alumina (Al2O3) deposition on a wide size range of hexagonal boron nitride (BN) platelet-like particles. Successful deposition of alumina films on these particles, with film thickness controllable at the Angstrom level, is observed based upon TEM imaging, ICP-AES, particle size distributions, and surface area analysis. While fluidizing, fine BN particles aggregate in the bed. The aggregates are the entities fluidizing, not the primary particles. However, individual particles are coated using Atomic Layer Deposition (ALD), not aggregates. Since ALD is a surface chemistry phenomenon, the films grow uniformly on every primary particle. BN particles are small platelets with different functional groups on the basal planes and edge planes. A small exposure to reagents [2.5×106 Langmuir (L) per reagent per cycle], will only coat the edge planes of uncoated BN particles. A larger dose of 1×108 L will coat the entire uncoated BN particle (edge and basal planes). After 10 ALD cycles of the 1×108 L dose, the exposures can be reduced to 1×106 L as the film is then growing on alumina and not BN. Peel strength data indicate that adhesion between the coated particles and a cured epoxy in a filled composite is ∼25% stronger than that of uncoated particles and the epoxy. The overall thermal conductivity drops ∼17% for an identical filler loading as expected due to the additional thermal resistance added by the film. However, the viscosity of an epoxy resin loaded with coated BN is as much as five times lower than that of the resin loaded with the same amount of uncoated BN. These results indicate that the loading of Al2O3 nanocoated BN particles in an epoxy matrix can be substantially increased relative to that of uncoated particles. The thermal conductivity of the more highly filled composite will be increased without adversely impacting filled resin viscosity or the peel strength of the cured material. This is the first reported study indicating that cohesive primary particles that fluidize as aggregates in a fluidized bed can be individually coated with a nano-thick ceramic film using ALD.  相似文献   
5.
An alternative design of a semitransparent cathode for top‐emission white‐fluorescent organic light‐emitting diodes (OLEDs) has been investigated. The scope of this study was to improve the luminance of OLEDs used for displays while keeping the current density versus voltage characteristic unchanged for addressing purposes. The use of an optical simulation tool allowed the optimization of the tri‐layer cathode WO3/Ag/WO3 to increase the light out‐coupling coefficient of the device leading to an increased white emission compared with a reference device with a Ca/Ag cathode. An increase of ~40% in luminance has been calculated by simulation and experimentally confirmed. The p‐i‐n OLED structure underneath the tri‐layer cathode allowed an efficient injection of electrons independently from the work function of WO3. The WO3/Ag/WO3 cathode has been also confirmed to be compatible with the atomic layer deposition technique for thin film encapsulation. Finally, lifetime measurements up to 600 h have been carried out to quantify the enhancements induced by the new cathode compared with the control device. It has been found that lifetimes of both cathode architectures are similar on this time scale, while the WO3/Ag/WO3 cathode shows a lower voltage drift versus aging.  相似文献   
6.
以六羰基钼和氧气为前驱体,通过等离子增强原子层沉积技术(PE-ALD)在硅基片上实现了α-MoO3薄膜的低温制备。利用X射线衍射仪、扫描电子显微镜、原子力显微镜、X射线光电子能谱仪等手段对薄膜的晶体结构、表面形貌及薄膜成分进行表征和分析。研究发现衬底温度和氧源脉冲时间对MoO3薄膜的晶体结构和表面形貌变化起关键作用。当衬底温度为170℃及以上时所制备的薄膜为α-MoO3;适当延长ALD单循环中的氧源脉冲时间有利于低温沉积沿(0k0)高度择优取向的MoO3薄膜。根据对不同厚度MoO3薄膜表面的原子力显微图片分析,MoO3薄膜为岛状生长模式。  相似文献   
7.
Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass.In this study,we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors.The long cellulose nanofibrils (CNFs) formed a macroporous framework,and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores.This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) Al2O3 conformal coating,which effectively prevented the aggregation of nanocellulose.These carbonized,partially graphitized nanocellulose fibers were interconnected,forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g-1.The two-level hierarchical porous structure facilitated fast ion transport in the film.When tested as an electrode material with a high mass loading of 4 mg·cm-2 for supercapacitors,the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F.g-1and extraordinary performance at high current densities.Even at a very high current of 50 A·g-1,it retained 65% of its original specific capacitance,which makes it a promising electrode material for high-power applications.  相似文献   
8.
Thin films of CaCO3 (calcite) have been grown with the atomic layer chemical vapour deposition (ALCVD) technique, using Ca(thd)2 (Hthd=2,2,6,6-tetramethylheptan-3,5-dione), CO2, and ozone as precursors. Pulse parameters for the ALCVD-type growth are found and self-limiting reaction conditions are established between 200 and 400 °C. Calcium carbonate films have been deposited on soda-lime glass, Si(100), -Al2O3(001), -Al2O3(012), -SiO2(001), and MgO(100) substrates. The observed textures were: in-plane oriented films with [100](001)CaCO3 [100](001)Al2O3 and [100](001)CaCO3[110](001)Al2O3 on -Al2O3(001), amorphous films on -Al2O3(012) when grown at 250 °C, and columnar oriented films on soda-lime glass, Si(001), -SiO2(001), and MgO(100) substrates with (00l) and (104) parallel to the substrate plane at 250 and 350 °C, respectively. The film topography was studied by atomic force microscopy and AC impedance characteristics were measured on as-deposited films at room temperature. The films were found to be insulating with a dielectric constant (r) typically approximately 8. Thin films of CaO were obtained by heat treatment of the carbonate films at 670 °C in a CO2-free atmosphere, but the thermal decomposition led to a significant increase in surface roughness.  相似文献   
9.
目的 探索基于原子层沉积法(Atomic Layer Deposition,ALD)的纳米涂层低温制备技术,并重点研究涂层沉积过程及纳米氧化铝涂层对刀具力学性能的影响.方法 利用原子层沉积法,在200℃的环境下制备不同涂层厚度的纳米Al2O3涂层刀具,对涂层的微观组织、厚度、硬度、断裂韧性、断口形貌、弯曲强度、结合力及摩擦系数进行检测.结果 ALD沉积技术能将纳米涂层均匀沉积在YT5刀具表面,且涂层光滑,无滴状气泡,涂层厚度可以精确控制在纳米级.ALD涂层与基体结合力的大小与涂层厚度相关,随着涂层厚度增大,结合力呈先增后降的趋势,测得50、100、200 nm等3种纳米涂层结合力大小分别为11.07、12.74、7.86 N.纳米涂层能够提高刀具的硬度,显著降低刀具表面的摩擦系数,测得刀具摩擦系数分别为0.56、0.43、0.67,最高降低摩擦系数达40%以上.此外在200℃的沉积温度下,没有产生金属相变,因而对刀具基体没有影响,刀具的断裂韧性和弯曲强度没有降低.结论 基于ALD的纳米涂层低温沉积技术所制备的纳米涂层刀具,具有良好的力学性能及涂层-基体界面结合力,能显著提高刀具性能,改善切削加工条件.  相似文献   
10.
采用原子层沉积(ALD)方法,分别以VO(OC3H7)3和H2 O2为钒源和氧源,在载玻片基底上沉积钒氧化物薄膜;在还原气氛的管式炉中,对钒氧化物薄膜进行还原退火结晶,进而得到VO2薄膜晶体.通过扫描电镜(SEM)、X-射线衍射(XRD)及X-射线光电子能谱(XPS)研究所制备的钒氧化物薄膜表面形貌、晶体结构以及组分的变化;利用傅里叶红外光谱(FT-IR)对VO2薄膜的红外透射性进行测试分析.结果表明:ALD所制备的薄膜以非晶态V2O5、VO2和V2O3为主;在通以还原气氛(95%Ar,5%H2)并500℃热处理2h后得到以(011)择优取向的单斜金红石纳米VO2薄膜,VO2晶体薄膜相变前后红外透过率突变量较大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号