首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40673篇
  免费   3401篇
  国内免费   2373篇
电工技术   13103篇
技术理论   1篇
综合类   3483篇
化学工业   2583篇
金属工艺   3325篇
机械仪表   5484篇
建筑科学   1409篇
矿业工程   1485篇
能源动力   1741篇
轻工业   1127篇
水利工程   1703篇
石油天然气   1087篇
武器工业   403篇
无线电   2477篇
一般工业技术   2474篇
冶金工业   1763篇
原子能技术   737篇
自动化技术   2062篇
  2024年   103篇
  2023年   452篇
  2022年   941篇
  2021年   1048篇
  2020年   1235篇
  2019年   938篇
  2018年   923篇
  2017年   1299篇
  2016年   1271篇
  2015年   1486篇
  2014年   2596篇
  2013年   2221篇
  2012年   3066篇
  2011年   3111篇
  2010年   2063篇
  2009年   2224篇
  2008年   2294篇
  2007年   2860篇
  2006年   2693篇
  2005年   2298篇
  2004年   1988篇
  2003年   1876篇
  2002年   1405篇
  2001年   1265篇
  2000年   988篇
  1999年   812篇
  1998年   590篇
  1997年   494篇
  1996年   377篇
  1995年   345篇
  1994年   256篇
  1993年   168篇
  1992年   164篇
  1991年   104篇
  1990年   88篇
  1989年   79篇
  1988年   63篇
  1987年   50篇
  1986年   34篇
  1985年   19篇
  1984年   38篇
  1983年   49篇
  1982年   30篇
  1981年   11篇
  1979年   3篇
  1964年   2篇
  1958年   2篇
  1957年   2篇
  1955年   3篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 796 毫秒
1.
This article provides a critical assessment of H2 from the standpoint of more widespread use as a sustainable fuel for Indian mobility applications in the global context. The potential techno-economic advantages of utilizing H2 for automobiles rather than battery electric vehicles or conventional internal combustion engine vehicles are emphasized. The present assessment demonstrates that H2 production, storage, and distribution costs are the primary challenges, and a significant improvement is still necessary for H2 to compete either against the internal combustion engine vehicle or the battery electric vehicle to win the race, arguably. The secondary challenges have also been demonstrated, which include the cost of the fuel cell stack and the modifications associated with internal combustion engine vehicles, as well as regulatory and safety concerns, which impede the widespread usage of H2. It is critical that policy-making for sustainable mobility in India is possible with the aid of a National H2 Energy Road-Map. This in turn can achieve a cost target of $0.5/kg for H2.  相似文献   
2.
Carbon dioxide (CO2) and methane (CH4) are the primary greenhouse gases (GHGs) that drive global climate change. CO2 reforming of CH4 or dry reforming of CH4 (DRM) is used for the simultaneous conversion of CO2 and CH4 into syngas and higher hydrocarbons. In this study, DRM was investigated using Ag–Ni/Al2O3 packing and Sn–Ni/Al2O3 packing in a parallel plate dielectric barrier discharge (DBD) reactor. The performance of the DBD reactor was significantly enhanced when applying Ag–Ni/Al2O3 and Sn–Ni/Al2O3 due to the relatively high electrical conductivity of Ag and Sn as well as their anti-coke performances. Using Ag–Ni/Al2O3 consisting of 1.5 wt% Ag and 5 wt% Ni/Al2O3 as the catalyst in the DBD reactor, 19% CH4 conversion, 21% CO2 conversion, 60% H2 selectivity, 81% CO selectivity, energy efficiency of 7.9% and 0.74% (by mole) coke formation were achieved. In addition, using Sn–Ni/Al2O3, consisting of 0.5 wt% Sn and 5 wt% Ni/Al2O3, 15% CH4 conversion, 19% CO2 conversion, 64% H2 selectivity, 70% CO selectivity, energy efficiency of 6.0%, and 2.1% (by mole) coke formation were achieved. Sn enhanced the reactant conversions and energy efficiency, and resulted in a reduction in coke formation; these results are comparable to that achieved when using the noble metal Ag. The decrease in the formation of coke could be correlated to the increase in the CO selectivity of the catalyst. Good dispersion of the secondary metals on Ni was found to be an important factor for the observed increases in the catalyst surface area and catalytic activities. Furthermore, the stability of the catalytic reactions was investigated for 1800 min over the 0.5 wt% Ag-5 wt% Ni/Al2O3 and 0.5 wt% Sn-5 wt% Ni/Al2O3 catalysts. The results showed an increase in the reactant conversions with an increase in the reaction time.  相似文献   
3.
Electric vehicles (EVs) are considered a promising alternative to conventional vehicles (CVs) to alleviate the oil crisis and reduce urban air pollution and carbon emissions. Consumers usually focus on the tangible cost when choosing an EV or CV but overlook the time cost for restricting purchase or driving and the environmental cost from gas emissions, falling to have a comprehensive understanding of the economic competitiveness of CVs and EVs. In this study, a life cycle cost model for vehicles is conducted to express traffic and environmental policies in monetary terms, which are called intangible cost and external cost, respectively. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and CVs are compared in four first-tier, four new first-tier, and 4 s-tier and below cities in China. The comparison shows that BEVs and FCEVs in most cities are incomparable with CVs in terms of tangible cost. However, the prominent traffic and environmental policies in first-tier cities, especially in Beijing and Shanghai, greatly increase the intangible and external costs of CVs, making consumers more inclined to purchase BEVs and FCEVs. The main policy benefits of BEVs and FCEVs come from three aspects: government subsidies, purchase and driving restrictions, and environmental taxes. With the predictable reduction in government subsidies, traffic and environmental policies present important factors influencing the competitiveness of BEVs and FCEVs. In first-tier cities, BEVs and FCEVs already have a competitive foundation for large-scale promotion. In new first-tier and second-tier and below cities, stricter traffic and environmental policies need to be formulated to offset the negative impact of the reduction in government subsidies on the competitiveness of BEVs and FCEVs. Additionally, a sensitivity analysis reveals that increasing the mileage and reducing fuel prices can significantly improve the competitiveness of BEVs and FCEVs, respectively.  相似文献   
4.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
5.
Five-axis machining plays an important role in manufacturing by dint of its high efficiency and accuracy. While two rotation axes benefit the flexibility of machining, it also brings limitations and challenges. In order to further balance machining precision and efficiency, an improved feedrate scheduling method is presented considering geometric error and kinematic constraints for the Non Uniform Rational B-Spline (NURBS) interpolation in five-axis machining. A simplification method is proposed to calculate the geometric error which describes the deviation between the ideal tool path and the real tool path induced by the non-linear movement. A linear relation between geometric error and feedrate is built to limit the feedrate. The constraints determined by single axis kinematic performance and tangential kinematic performance are also considered. Under these constraints, a constrained feedrate profile is determined. Aiming to get more constant feedrate in the difficult-to-machine areas, this work proposes a scheduling method which combines morphological filtering and S-shape acceleration/deceleration (acc/dec) mode. Simulations and experiments are performed to compare the proposed feedrate scheduling method with two previous feedrate scheduling method and the results prove that the proposed feedrate scheduling method is reliable and effective.  相似文献   
6.
This paper assesses building integrated photovoltaic (BIPV) installation parameters based on the profit generated by a photovoltaic system. It takes into consideration a home building case study and it investigates its monthly energy demand based on a specific location and a typical occupancy. The capability of a photovoltaic (PV) system to generate more profit occurs when solar intensity is maximum while the electric energy price is at its highest rate. The paper traces a framework that encompasses different aspects such as energy demand, energy price, and solar intensity. This framework identifies profit alternatives according to different installation parameters. A tool that predicts a PV installation hourly electric energy production is developed. The profit generated is simulated for home buildings located in Beirut (Lebanon) and Xihua (China), both at 33.8° latitude north. The paper highlights a new approach for BIPV installations, taking into account weather conditions, energy demand, and electric energy utility rates.  相似文献   
7.
The effect of Reynolds number and boundary layer thickness on the performance of V-cone flowmeter has been evaluated using computational fluid dynamics (CFD). The shear stress transport k-ω (SST k-ω) turbulence model has been adopted for closure. The performance of two V-cone flowmeters with different beta ratios (β) viz., 0.6 and 0.7 for a fixed vertex angle (ϕ) of 60° has been analysed as a function of Reynolds number (Re). The results show that the coefficient of discharge (Cd) increases with Reynolds number in the laminar and transition flow regimes whereas it is nearly constant in turbulent flow regime. From the results, it can be concluded that Cd is independent of Re for values equal to 4000 and beyond. Further, it is also seen that the performance of the V-cone flowmeter is not affected by the upstream boundary layer thickness if the velocity profiles having different boundary layer thickness are extracted from an axial distance of 10D and more are fed at 5D upstream of the meter. However, the meter is sensitive to the extracted velocity profile from an axial distance of 5D and uniform velocity profile being fed at 5D upstream. The value of Cd may be sensitive as a result of the pressure variation due to the obstruction.  相似文献   
8.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
9.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
10.
某出口型号交流电力机车牵引控制系统要求变流器控制逻辑具备接触器控制、牵引系统数据交互、变流器故障保护、变流器启动自检等功能。针对以上功能,基于MATLAB中的Simulink/Stateflow可视化编程工具进行牵引控制模型的搭建,遵循模块化编程理念,采用较少的程序代码编写实现复杂的逻辑控制模型,生成逻辑清晰的控制功能流程图,进行半实物仿真测试,增强控制模型的可靠性。通过该变流器产品型式试验检验,验证变流器控制逻辑的功能可以满足控制系统的需求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号