首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1593篇
  免费   7篇
  国内免费   34篇
电工技术   10篇
综合类   6篇
化学工业   859篇
金属工艺   133篇
机械仪表   21篇
建筑科学   10篇
矿业工程   2篇
能源动力   176篇
轻工业   16篇
石油天然气   6篇
武器工业   1篇
无线电   38篇
一般工业技术   323篇
冶金工业   15篇
原子能技术   9篇
自动化技术   9篇
  2024年   1篇
  2023年   20篇
  2022年   42篇
  2021年   65篇
  2020年   48篇
  2019年   42篇
  2018年   63篇
  2017年   51篇
  2016年   44篇
  2015年   67篇
  2014年   117篇
  2013年   136篇
  2012年   66篇
  2011年   164篇
  2010年   147篇
  2009年   107篇
  2008年   86篇
  2007年   93篇
  2006年   80篇
  2005年   79篇
  2004年   39篇
  2003年   27篇
  2002年   28篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   1篇
  1997年   2篇
  1988年   1篇
排序方式: 共有1634条查询结果,搜索用时 19 毫秒
1.
Here, we have fabricated the spinel binary-metal oxide (FeCo2O4) via a solvent-free and cost-effective approach. The nanocomposites of the as-fabricated binary-metal spinel oxide have been prepared with three different conductive-matrices, namely r-GO, CNTs, and PANI, via ultra-sonication approach. The spinel phase and surface functionalities of the fabricated FeCo2O4 sample have been confirmed via XRD and FT-IR analyses, respectively. The morphological-structure and elemental composition of the fabricated samples have been probed via FESEM and EDX results. The role of added conductive-matrices in the improvement of the electrical conductivities of the fabricated nanocomposites has been investigated via I–V experiments. The electrochemical experiments, conducted in half-cell configuration, showed that FeCo2O4/PANI nanocomposite exhibited the highest specific capacitance (658.9 Fg-1) than that of the remaining two nanocomposites. Furthermore, FeCo2O4/PANI nanocomposite exhibited excellent cyclic stability as it lost just 8.3% of its initial specific capacitance even after 3000 cyclic tests. The superior capacitive-activity of the FeCo2O4/PANI nanocomposite is accredited to its high conductivity, large surface area, and synergy effects between the pseudocapacitance derived from the PANI and FeCo2O4 nanostructure. The electrochemical and electrical measurements suggested that FeCo2O4/PANI nanostructure is an emerging contender for energy storage applications.  相似文献   
2.
In this study, MgO nanoparticles were successfully fabricated and incubated inside ZnO NPs to form MgO/ZnO nanocomposite for biomedical applications. The x-ray diffraction analysis of MgO, ZnO, and MgO/ZnO has shown the single-phase x-ray diffraction patterns through X'pert High score. The crystallite sizes were calculated as 18 nm, 42 nm, and 53 nm, respectively. The average particle size of MgO, ZnO, and MgO/ZnO nanopowders depicted from secondary electron images of field emission electron microscopy were 56 nm, 400 nm, and 450 nm, respectively. The presence of MgO NPs inside ZnO NPs was confirmed by transmission electron microscopy. The elemental dispersive spectroscopy of MgO, given the peaks of oxygen and magnesium, also showed only zinc and oxygen peaks in ZnO, which confirms no other impurities in MgO and ZnO powders. The elemental analysis of MgO/ZnO nanocomposite showed the peaks of Zinc and Oxygen, along with a tiny peak of Mg. The photoluminescence and UV–vis spectroscopy revealed the absorbance fluorescence limit of the nanomaterials. Fourier transform infrared spectroscopy confirmed the several groups present in the nanocomposite. The biocompatibility of MgO, ZnO, and MgO/ZnO was observed with human peripheral blood mononuclear cells. The cytotoxicity studies were also performed against human cancer (liver and breast) cell lines. The MgO, ZnO, and MgO/ZnO exhibited the antimicrobial properties against Escherichia coli and Staphylococcus aureus.  相似文献   
3.
《Ceramics International》2022,48(6):7533-7549
(1-x)SrFe10Al2O19/(x)Co0.6Zn0.4Fe2O4-(SFAO/CZFO) hard/soft nanocomposite ferrite materials were synthesized by ‘one-pot’ self-propagating combustion route. The co-existence of the two magnetic phases were confirmed by XRD, FESEM, EDS and VSM. The prepared nanocomposite samples were also characterized by TGA/DSC, Raman spectroscopy and VNA. Exchange coupling between the hard and the soft magnetic grains was observed by determining the switching field distribution (SFD) curve. As a result of the competing effects of exchange interaction and dipolar interaction, magnetic parameters were observed to be sensitive to the incorporation of soft magnetic phase into the nanocomposite. Results showed that with the inclusion of soft magnetic phase, exchange coupling behaviour between the hard and the soft ferrite phases had significant influence on the microwave absorption capacity of the samples. Related electromagnetic parameters and impedance matching ratio of the nanocomposite system were discussed. A minimum reflection loss of ?42.9 dB with an absorber thickness of 2.5 mm was attained by the nanocomposite (90 wt%)SrFe10Al2O19/(10 wt %)Co0.6Zn0.4Fe2O4 at a matching frequency of 11.45 GHz. This assured the candidacy of SrFe10Al2O19/Co0.6Zn0.4Fe2O4 nanocomposite as a promising microwave absorption material in the X-band (8–12 GHz).  相似文献   
4.
《Ceramics International》2022,48(3):3059-3069
In this work, an ultralight nanocomposite of graphene oxide aerogels as a matrix and nickel-zinc ferrite (Ni0.7Zn0.3Fe2O4) nanoparticles as a second phase for the absorption of electromagnetic waves in the frequency of 1–18 GHz were fabricated by the hydrothermal - freeze-drying method. α-Al2O3 nanoparticles were used for further impedance matching for applications in electromagnetic wave absorption. XRD, SEM, EDS, and VNA analyses were used to characterize the sample. The effects of the amount of Ni0.7Zn0.3Fe2O4 (NZF) nanoparticles (GO: NZF volume percent ratio = 5:1 and 2:1) on the absorption of electromagnetic waves were investigated.  相似文献   
5.
The combination of inorganic (e.g., ferrite nanoparticles) and organic (e.g., conducting polymers) materials in the fabrication of heterojunctions or composites is an attractive scheme in the field of photocatalysis. We took the advantage of this phenomenon by fabricating MFerrite (M = Co, Ni, and Zn) @polypyrrole (MFerrite@Ppy) nanocomposites with a varying weight percentage of Ppy for the hydrogen production through photocatalytic water splitting under visible light irradiation. The structural, spectral, morphological, compositional, and optical features of the as-prepared nanocomposites were analyzed in full depth. The average crystallite sizes were estimated to be 30–40 nm from the XRD patterns which were further validated by TEM images from which a core-shell structure of the composites can be inferred. Likewise, the SEM images revealed spherical Ppy particles with a diameter in the range of 100–300 nm. From a photocatalytic viewpoint, CoFerrite@30Ppy is endowed with some peculiar characteristics including but not limited to strong light-harvesting ability (ranging between 300 and 650 nm), narrow optical band gap (as low as 1.6 eV), and higher photoluminescence (PL) lifetime (6.41 ns) which justify why it stands out among all composites in terms of photocatalysis. Under 8 h illumination of simulated visible light and using triethanolamine (TEOA) as a hole scavenger and Eosin-Y (EY) as a dye sensitizer, the photocatalytic hydrogen evolution (HER) amount for CoFerrite@30Ppy was found to be 10.44 mmol g?1, far greater than any other composite catalysts in this study. From the PL spectra, it can be pointed out that sensitization of CoFerrite with 30 wt % Ppy conduces to simultaneous deceleration of the electron-hole recombination process and acceleration of the transference of excitons within the system.  相似文献   
6.
7.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
8.
The repair of bone fractures is a clinical challenge for patients with impaired healing, such as osteoporosis. Currently, different strategies have been developed to design new biomaterials, enhancing their interactions with biological systems and conducting the cellular behavior in the desired direction to help fracture healing. In the present work, hydroxyapatite-graphene oxide (HA-GO) nanocomposites were produced and the morphological and physicochemical influences of the addition of 0.5 wt%, 1.0 wt% and 1.5 wt% of GO to HA were observed. FEG-SEM and TEM analyses of HA-GO nanocomposites showed HA nanoparticles adhered to the surface of the GO sheets, suggesting an effective method to form nanostructured graphene-based biomaterials. As confirmation, physicochemical analyses by Raman, FTIR and TGA demonstrated a strong affinity between HA and GO, according to the increase of concentration from 0.5 wt% to 1.5 wt% GO in the HA-GO nanocomposites. Also, in order to evaluate the HA-GO nanocomposites behavior under biological microenvironment, in vitro bioactivity and indirect cytotoxicity tests were performed. FEG-SEM analyses confirmed the positive results for the bioactivity properties of HA-GO nanocomposite and indirect cytotoxicity demonstrated that even with a decrease in the hDPSCs viability and proliferation, when increasing to 1.5 wt% of GO concentration, high level of cell viability was exhibited by HA-GO nanocomposites. These biological results suggested the 0.5 wt% HA-GO nanocomposite as a potential bioactive bone graft and a promising biomaterial for bone tissue regeneration, when compared to the pure HA.  相似文献   
9.
《Ceramics International》2021,47(18):25769-25776
Lithium-sulfur battery cathodes still remain a challenge on capacity decay due to the shuttle effect even though a series of strategies have been tried. Here we report a novel matryoshka-like CuS@void@Co3O4 architecture of double micro-cubes (μ-cubes) that locks sulfur between the CuS core and the Co3O4 shell. Plenty of existing spaces between the μ-cubes suffice a high loading of sulfur and volumetric accommodation. The robust, double closed cubes configuration greatly enhances the confinement of polysulfides. In parallel, the CuS core increases the electronic conductivity and contributes to additional capacity, while the Co3O4 shell ensures a better interface activity. A high Li+ ion diffusion coefficient is obtained during the sulfur and lithium sulfide transformation. The constructed battery displays an initial capacity up to 1480 mAh g−1, and a Coulombic efficiency (CE) exceeding 99%. A capacity retention higher than 500 mAh g−1 with a CE larger than 99.8% after cycling 400 times at 0.2 C are achieved. In addition, under a temperature of −5 °C, a high capacity of 700 mAh g−1 at 0.2 C after 200 cycles is achieved, indicating a good low-temperature tolerance.  相似文献   
10.
《Ceramics International》2022,48(15):21961-21971
The Simplistic formation, advantageous configuration, non-colossal magnetoresistance and broadband absorption are important parameters for microwave absorbent materials. In this study, a core-shell nanocomposite comprising of Sn-filled carbon nanotubes (Sn/CNTs) was prepared by arc discharge method. The microstructure, morphology and surface composition of Sn/CNTs-based core-shell nanocomposites were characterized in detail. Sn/CNTs nanocomposite showed a magnetic signal due to the broken bonds and defects at interfaces in Sn/CNTs. The weak ferromagnetism was found to be helpful in improving magnetic permeability in the Sn/CNTs which confirms its role as a magnetic loss material under incident electromagnetic wave. Sn-filled CNTs revealed an appropriate value of dielectric constant, which plays an important role in impedance matching upon incident electromagnetic wave. The composite of Sn-CNTs and paraffin with a 50 wt % loading showed the lowest reflection loss (RL) of ?43.87 dB at 10 GHz, with a wide effective absorption band (RL ≤ ?10 dB) of 3 GHz in thickness of 2.3 mm. This enhanced performance is attributed to the combined effect of the conduction loss in one-dimensional core-shell architecture, the interfacial loss Sn-CNT interface, the magnetic loss due to defects-induced ferromagnetism in Sn shell, and in the carbon-containing atomic layers of CNTs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号