首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   140篇
  国内免费   109篇
电工技术   27篇
综合类   68篇
化学工业   625篇
金属工艺   162篇
机械仪表   17篇
建筑科学   31篇
矿业工程   43篇
能源动力   60篇
轻工业   103篇
水利工程   3篇
石油天然气   32篇
武器工业   5篇
无线电   83篇
一般工业技术   348篇
冶金工业   65篇
原子能技术   22篇
自动化技术   17篇
  2023年   32篇
  2022年   45篇
  2021年   54篇
  2020年   54篇
  2019年   45篇
  2018年   58篇
  2017年   71篇
  2016年   57篇
  2015年   39篇
  2014年   66篇
  2013年   90篇
  2012年   86篇
  2011年   111篇
  2010年   63篇
  2009年   105篇
  2008年   73篇
  2007年   105篇
  2006年   103篇
  2005年   82篇
  2004年   81篇
  2003年   58篇
  2002年   55篇
  2001年   37篇
  2000年   29篇
  1999年   26篇
  1998年   17篇
  1997年   9篇
  1996年   14篇
  1995年   9篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1951年   1篇
排序方式: 共有1711条查询结果,搜索用时 15 毫秒
1.
Gadolinium zirconate (GZ) is an attractive material for thermal barrier coatings (TBCs). However, a single layer GZ coating has poor thermal cycling life compared to Yttria Stabilized Zirconia (YSZ). In this study, Solution Precursor High Velocity Oxy-Fuel (SP-HVOF) thermal spray was used to produce a double layer GZ/YSZ TBC and compared the thermal cycling performance with the single layer YSZ TBC. The temperature behaviour of the solution precursor GZ was studied, and single splat tests were carried out to obtain an optimised spray parameter. In thermal cycling tests, the single-layer YSZ reached 20 % failure at 85 ± 5 cycles, whereas the double-layer GZ/YSZ was at 70 ± 15 cycles. The single-layer failed at the topcoat/TGO interface, whereas the double-layer failed at GZ/YSZ interface and topcoat/TGO interface. Moreover, Gd diffusion occurred near the GZ/YSZ interface, resulting in porosities in the GZ layer.  相似文献   
2.
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer’s disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.  相似文献   
3.
建立了层叠流道的三维模型和有限元网格模型,根据流变测试数据,采用Polymat对物料的黏度模型参数进行拟合,并利用Polyflow软件对聚丙烯腈(PAN)凝胶在层叠流道内的三维等温流动过程进行了数值模拟分析。研究发现,当入口流量增大时,层叠流道出口速度的不均匀性增加;沿流动方向流道内压力逐渐降低,并在出口处降低至同一最低值;流道进出口压力差与入口流量大小具有正相关性;在流道的中心截面上剪切速率分布均匀,波动较小。  相似文献   
4.
《Ceramics International》2022,48(3):3311-3327
A liquid carbon-rich SiAlCN precursor is facilely synthetized by hydrosilylation between liquid polyaluminocarbosilane (LPACS) and 1,3,5,7-tetravinyl- 1,3,5,7-tetramethylcyclotetrasilazane {[CH3(CH2CH2)SiNH]4} (TeVSZ). The structural evolution during the polymer-ceramic conversion process is investigated by various methods. The results show that the main cured mechanism is β-addition on hydrosilylation, although α-addition on hydrosilylation, polymerization of vinyl groups and dehydrocoupling reaction between N–H bonds also occur during the cured process. During the pyrolysis process, dehydrogenation and dehydrocarbonation condensation reactions, transamination reactions occur, leading to formation of a three-dimensional network inorganic structure at 400–800 °C, where part of Al–O bonds convert to Al–N bonds. Then the network inorganic structure undergoes demixing and separation into amorphous SiAlCN(O) phase, where the amorphous turbostratic free carbon phase also form at 800–1200 °C. With demixing and decomposition of the amorphous carbon-rich SiAlCN(O) phase, the crystalline β-SiC and graphitic carbon start to form at about 1400 °C, the crystalline sizes of them both enlarge with increasing temperature. However, the crystal growth of β-SiC is distinctly inhibited due to existence of the rich carbon phase, tiny amounts of Al2O3 and AlN. In addition, a small amount of AlN can promote the formation of α-SiC at 1800 °C.  相似文献   
5.
针对矿山深部开采过程中易发生地压动力灾害的问题,基于微震监测技术,结合矿山实际特点建立岩体稳定性监测系统。优化台网设计,通过定点爆破的方法进行波速校正,最终建立了定位误差在10m,灵敏度在-2.2的监测台网。对监测数据进行波形拾取,分析微震事件时空演化特征,圈定潜在危险区域,并对潜在危险区域围岩变形损伤进行分析。最终总结出微震事件大幅度上升且处于较高水平、空间分布高度集聚、能量指数突然下降而累计视体积迅速上升的动力灾害预警前兆。研究结果可为深部开采岩体稳定性监测提供参考。  相似文献   
6.
The silica- and alumina-supported Co–Zn catalysts were synthesized by thermal decomposition of new inorganic precursors [Co4.32Zn1.68(HCO2)18(C2H8N)6]/SiO2 or Al2O3. A novel coordination polymer formulated as [Co4.32Zn1.68(HCO2)18(C2H8N)6] (1) was prepared using the solvothermal technique and characterized by elemental analysis, FT-infrared spectroscopy. Thermal stability of the complex 1 was investigated by thermogravimetric analysis and differential scanning calorimetry, and its structure was determined by single-crystal X-ray diffraction. Characterization of catalysts was carried out using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET specific surface area. The catalysts were evaluated for Fischer–Tropsch synthesis (FTS) in the temperature range 200–300 °C. The results revealed that the synthesized catalysts have higher selectivity to the desired products at 260 °C. The performance of the catalysts was compared to those of catalysts constructed via impregnation method and the fabricated catalysts show higher activity and selectivity than the reference catalysts.  相似文献   
7.
In this study, alumina-based composite with 12 wt% Al and 16 wt% Si3N4 was designed to achieve the synthesis of 15R-Sialon reinforced alumina composite. To investigate the reaction mechanism, two-step sintered Al-Si3N4-Al2O3 samples at different temperatures ranging from 600°C to 1500°C were prepared and characterized via X-ray diffraction and scanning electron microscope (SEM). The results revealed that 15R-Sialon was synthesized at 1500°C through a novel liquid Si phase sintering and Si3N4 played as a precursor and a reactant. First, Si3N4 precursor reacted with Al to form intermediate phases AlN and Si, which were not further transformed below 1400°C. When the sintering temperature was 1500°C, the formed Si presented as a liquid phase, under the influence of which plate-like15R-Sialon was generated from Al2O3, residual Si3N4, and derived AlN. The obtained Si was also involved in the synthesis of 15R-Sialon and completely transformed. In addition to the AlN from Si3N4, the AlN deriving from the nitridation of Al may not react with liquid Si. Compared to 15R-Sialon from liquid Si, plate-like 15R-Sialon with smaller size was generated from AlN, SiO, and O2.  相似文献   
8.
9.
Li4SiO4 sorbents for high-temperature CO2 removal have drawn extensive attention owing to their potential application in carbon capture and storage (CCS). The major challenge in the application lies in the poor CO2 capture performance under realistic conditions of low CO2 concentrations, owing to the dense structure and poor porosity. In this work, Li4SiO4 sorbents were prepared with porous micromorphologies and large contact areas using a variety of organometallic Li-precursors, achieving fast CO2 sorption kinetics, high capacity and excellent cyclic stability at a low CO2 concentration (15?vol%). It was found that a high conversion of ~?74% was maintained for pure Li4SiO4 even after 100 sorption/desorption cycles. Moreover, by doping with Na2CO3 to reduce the CO2 diffusion resistance, the conversion of the sorbent was further enhanced to 93.2%. The enhancement mechanism of alkali carbonate have been proven here to be ascribed to the formation of the eutectic melt of Li/Na carbonates, the existence and function of which has been confirmed in this study.  相似文献   
10.
Several intermediate steps were applied before the precursor infiltration and pyrolysis process to improve the infiltration of SiC slurry for promoting the infiltration of SiC slurry into fiber voids. These steps include sonication, popping, electrophoretic deposition, vacuum infiltration and cold isostatic pressing (CIP). The intermediate processes, especially popping and CIP, had a beneficial effect on green density enhancement and improving the homogeneous infiltration of the slurry into fiber fabrics. The density of the SiCfiber/SiCfiller green body was 2.20 g/cm3, which corresponded to 68 % of relative density. The SiCf/SiC composite has a high density of 2.65 g/cm3 after seven PIP cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号