首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4209篇
  免费   407篇
  国内免费   542篇
电工技术   124篇
综合类   161篇
化学工业   1520篇
金属工艺   932篇
机械仪表   254篇
建筑科学   10篇
矿业工程   51篇
能源动力   38篇
轻工业   15篇
水利工程   3篇
石油天然气   7篇
武器工业   61篇
无线电   525篇
一般工业技术   1202篇
冶金工业   164篇
原子能技术   64篇
自动化技术   27篇
  2024年   5篇
  2023年   149篇
  2022年   214篇
  2021年   233篇
  2020年   182篇
  2019年   177篇
  2018年   182篇
  2017年   196篇
  2016年   185篇
  2015年   98篇
  2014年   173篇
  2013年   175篇
  2012年   198篇
  2011年   283篇
  2010年   176篇
  2009年   278篇
  2008年   204篇
  2007年   284篇
  2006年   259篇
  2005年   185篇
  2004年   168篇
  2003年   138篇
  2002年   162篇
  2001年   172篇
  2000年   131篇
  1999年   107篇
  1998年   81篇
  1997年   66篇
  1996年   68篇
  1995年   58篇
  1994年   49篇
  1993年   39篇
  1992年   34篇
  1991年   16篇
  1990年   8篇
  1989年   12篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1959年   2篇
排序方式: 共有5158条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(11):15268-15273
SiC/SiC mini-composites reinforced with SiC fibers coated with different numbers of ZrSiO4 sublayers prepared via a non-hydrolytic sol-gel process were fabricated. The tensile strength and work of fracture of the prepared SiC/SiC mini-composites were determined, and the relationship between their mechanical properties and fracture morphologies was discussed. The toughening mechanism and the variation tendency of their mechanical properties were further elaborated by analyzing the interfacial debonding morphologies of the SiC/SiC mini-composites with 1 and 4 layers of ZrSiO4 interphase as well as the results of prior studies. A relatively rare phenomenon—the delamination of the multilayer ZrSiO4 interphase in the SiC/SiC mini-composites but not on the SiC fibers—was observed, which clearly demonstrated the weak bonding between the ZrSiO4 sublayers in the SiC/SiC mini-composites. The ZrSiO4 sublayer delamination mechanism was then explained based on the high-magnification morphologies found in and beside the ZrSiO4 interphase.  相似文献   
2.
《Ceramics International》2022,48(17):24592-24598
Single-phase Al4SiC4 powder with a low neutron absorption cross section was synthesized and mixed with SiC powder to fabricate highly densified SiC ceramics by hot pressing. The densification of SiC ceramics was greatly improved by the decomposition of Al4SiC4 and the formation of aluminosilicate liquid phase during the sintering process. The resulting SiC ceramics were composed of fine equiaxed grains with an average grain size of 2.0 μm and exhibited excellent mechanical properties in terms of a high flexure strength of 593 ± 55 MPa and a fracture toughness of 6.9 ± 0.2 MPa m1/2. Furthermore, the ion-irradiation damage in SiC ceramics was investigated by irradiating with 1.2 MeV Si5+ ions at 650 °C using a fluence of 1.1 × 1016 ions/cm2, which corresponds to 6.3 displacements per atom (dpa). The evolution of the microstructure was investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The breaking of Si–C bonds and the segregation of C elements on the irradiated surface was revealed by XPS, whereas the formation of Si–Si and C–C homonuclear bonds within the Si–C network of SiC grains was detected by Raman spectroscopy.  相似文献   
3.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
4.
A series of 3 C-SiC coatings were prepared by organometallic chemical vapor deposition (MOCVD) using precursor solution containing a varying proportion of commercial-grade hexamethyldisiloxane (HMDSO) and n-hexane. The phase composition, bonding state, and microstructure of 3 C-SiC coatings were studied in detail by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The microstructure and mechanical properties of the optimal 3 C-SiC coating were characterized by scanning transmission electron microscopy (STEM) and nanoindentation, respectively. Our results revealed that the amount of undesired graphite phase can be significantly reduced in the 3 C-SiC coating by introducing hydrogen gas in the reaction chamber alongside increasing the ratio of HMDSO/n-hexane in the precursor mixture. The STEM results revealed that the optimal coating was predominantly composed of nano-crystalline 3 C-SiC grains alongside a small amount of amorphous graphite. The hardness and elastic modulus of the optimal coating were 38.19 GPa and 363.2 GPa, respectively.  相似文献   
5.
《Ceramics International》2021,47(22):31457-31469
The present work investigated the effects of thermal cycles in air on the tensile properties of a two-dimensional carbon fibre reinforced silicon carbide composite (2D C/SiC) prepared by chemical vapour infiltration at different heating rates. The composite was exposed to different cycles of thermal shock between 20 °C and 1300 °C in air. The damage mechanisms were investigated by AE online monitoring and fractured morphology offline analysis. The tensile strength of 2D-C/SiC decreases with increasing thermal cycles. However, the modulus only decrease within 40 cycles. Due to oxidation, with the decrease in heating rate, the residual properties of the material decrease more obviously. Meanwhile, the results of AE online monitoring and fracture analysis show that the matrix damage is more serious at higher heating rate and that more delamination occours in tensile fractures. The above results indicate that for the thermal shock of 2D C/SiC composites in air, oxidative damage plays a key role in the residual properties.  相似文献   
6.
《Ceramics International》2022,48(17):24859-24865
Ca3Co4O9+δ is a typical p-type thermoelectric oxide material with a low thermal conductivity. In this study, double-layered oxide samples Ca(Ba,Sr)3Co4O9+δ dispersed with different SiC contents were obtained via the traditional solid phase reaction method. The effects of different elemental substitutions and SiC dispersion contents on the microstructure and thermoelectric properties of the samples were studied. The double optimisation of partial substitution of Ca-site atoms and SiC dispersion considerably improved the thermoelectric properties of Ca3Co4O9+δ. Through the elemental substitution, the resistivity of the Ca3Co4O9+δ material was reduced. Conversely, introducing an appropriate amount of SiC nanoparticles enhanced phonon scattering and was crucial in reducing its thermal conductivity. After double optimisations, the dimensionless thermoelectric figure of merit (ZT) values of both Ca2.93Sr0.07Co4O9+δ + 0.1 wt% SiC and Ca2.9Ba0.1Co4O9+δ + 0.1 wt% SiC achieved an optimum value of 0.25 at 923 K.  相似文献   
7.
《Ceramics International》2022,48(4):5338-5351
This study aimed to investigate experimentally the repeated low-velocity impact behaviors of SiC reinforced aluminum 6061 metal-matrix composites for different volume fractions and energy levels. In addition, the hardness variations were measured by the Vickers hardness tests from the impacted and impact-free cross-sections of the particle reinforced metal-matrix composites. Low-velocity impact tests were applied to composite samples manufactured by powder metallurgy (in 10, 20, and 30% volume fractions) at two total energy levels (15 and 60 J as single) and in repetitions equal to the sum of these energy levels (5 + 5 + 5 and 20 + 20 + 20 J as repeated). As a result, in increasing the impact number for all volume fractions, the total contact time was shortened and the peak contact force increased, whereas both the permanent central deflection and the absorbed energies reduced. Hence, these variations obtained under repeated impacts (5 + 5 + 5 and 20 + 20 + 20 J) revealed that metal-matrix composites showed a tougher behavior with an increase in the impact numbers from 1st to 3rd, particularly because of the strain hardening effect. Furthermore, an increase in volume fraction from 10 to 30% resulted in an increase in the impact strength under all repeated and single impacts despite changing deformation and damage mechanisms due to increasing the strain hardening effect and particle fractures. The hardness was affected by the volume fraction and increased as the volume fraction increased in both the impacted and impact-free zones. The repeated impact increased the impacted zone hardness more than the single impact for all volume fractions. Additionally, the hardness of the impacted zone under 20 + 20 + 20 J repeated impact was measured as the highest value in the 30% volume fraction. Therefore, metal-matrix composites can behave harder with the strain hardening effect under repeated impacts.  相似文献   
8.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
9.
《Ceramics International》2022,48(3):3261-3273
C/C–SiC composites have enormous potential as a new generation of brake materials. It is worth studying the friction and wear behaviours of these materials in special environments to ensure the safe and effective braking of trains in practical applications. In this study, the braking behaviours and wear mechanisms of C/C–SiC mating with iron/copper-based PM in dry, wet and salt fog conditions are compared in detail. The results show that the coefficient of friction (COF) in the wet condition is reduced by 14.13% compared with that under the dry condition. The COF value of the first braking under salt fog condition is increased by 12.27% and 30.75% compared to the dry and wet conditions, respectively. Additionally, the tail warping phenomenon of the braking curve disappears in wet condition, which is attributed to the weak adhesion of friction interfaces and the lubrication of the water film. The main wear mechanisms of C/C–SiC mating with iron/copper-based PM under dry condition are adhesive, fatigue and oxidation wear. However, the dominant wear in wet condition is abrasive wear. The cooling and lubrication of water reduce the tendency of thermal stress, and weaken adhesive and fatigue wear. Furthermore, salt fog can accelerate the corrosion of alloy friction film, leading to the damage of friction film. Meanwhile, the third body particles formed in salt fog condition participate in the braking process. The wear mechanisms in salt fog condition are dominated by abrasive and delamination wear.  相似文献   
10.
《Ceramics International》2022,48(11):15364-15370
This study reports on the preparation and mechanical properties of a novel SiCnf/SiC composite. The single crystal SiC nanofiber(SiCnf) reinforced SiC ceramic matrix composites (CMC) were successfully fabricated by hot pressing the mixture of β-SiC powders, SiCnf and Al–B–C powder. The effects of SiCnf mass fraction as well as the hot-pressing temperature on the microstructure and mechanical properties of SiCnf/SiC CMC were systematically investigated. The results demonstrated that the 15 wt% SiCnf/SiC CMC obtained by hot pressing (HP) at 1850 °C with 30 MPa for 60 min possessed the maximum flexural strength and fracture toughness of 678.2 MPa and 8.33 MPa m1/2, respectively. The nanofibers pull out, nanofibers bridging and cracks deflection were found by scanning electron microscopy, which are believed can strengthen and toughen the SiCnf/SiC CMC via consuming plenty of the fracture energy. Besides, although the relative density of the prepared SiCnf/SiC CMC further increased with the sintering temperature rose to 1900 °C, the further coarsend composites grains results in the deterioration of the mechanical properties for the obtained composites compared to 1850 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号