首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
能源动力   2篇
原子能技术   2篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TWthh, by adding moderator pins of B4C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TWthh, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.  相似文献   
2.
This paper presents briefly the safety approach as well as the R&D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R&D. B) Strategy and roadmap in support of the R&D for future SFRs. This section describes the R&D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype.  相似文献   
3.
Studies related to severe core accidents constitute a crucial element in the safety design of Gen‐IV systems. A new experimental program, related to severe core accidents studies, is proposed for the zero‐power experimental physics reactor (ZEPHYR) future reactor. The innovative program aims at studying reactivity effects at high temperature during degradation of Gen‐IV cores by using critical facilities and surrogate models. The current study introduces the European lead‐cooled system (ELSY) as an additional Gen‐IV system into the representativity arsenal of the ZEPHYR, in addition to the sodium‐cooled fast reactors. Furthermore, this study constitutes yet another step towards the ultimate goal of studying severe core accidents on a full core scale. The representation of the various systems is enabled by optimizing the content of plutonium oxide in the ZEPHYR fuel assembly. The study focuses on representing reactivity variation from 900°C at nominal state to 3000°C at a degraded state in both ELSY and Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) cores. The study utilizes the previously developed calculation scheme, which is based on the coupling of stochastic optimization process and Serpent 2 code for sensitivity analysis. Two covariance data are used: the ENDF 175 groups for ELSY and the Covariance Matrix Cadarache (COMAC) 33 groups for ASTRID. The effect of the energy group structure of the covariance data on the representativity process is found to be significant. The results for single degraded ELSY fuel assembly demonstrate high representativity factor (>0.95) for reactivity variation and for the criticality level. Also, it is shown that the finer energy group structure of the covariance matrices results in dramatic improvement in the representation level of reactivity variations.  相似文献   
4.
The comprehension of severe criticality accident is a key issue in Gen‐IV neutronics and safety. Within the future zero‐power experimental physics reactor (ZEPHYR), to be built in Cadarache in the next decade, innovative approaches to reproduce high temperature partially degraded Gen‐IV cores into a critical facility is being investigated. This work presents the first attempt to represent a fuel assembly of sodium‐cooled fast reactor severe criticality accident based on surrogate models. One identified way to construct such representative configuration is to use MASURCA plates stockpile (MOX, UOx, Na, U, and Pu metal) in a fast/thermal coupled core to model a stratified molten assembly. The present study is the first step in a more global approach to full core analysis. The approach is based on a nature‐inspired metaheuristic algorithm, the particle swarm optimization algorithm, to find relevant ZEPHYR configuration at 20°C that exhibits characteristics of (2000‐3000°C) molten MOX assembly in a stratified metal arrangement in a reference sodium‐cooled fast reactor core. Thus, the underlying research question of this study is whether it is possible to represent temperature‐related reactivity effects occurring at fuel meltdown temperatures in a power reactor as density‐related reactivity effects at the operation temperature of a zero‐power reactor, and if so, how should it be done? The calculations are based on a Serpent‐2 Monte Carlo sensitivity and representativity analysis using the Cadarache's cross sections covariance data (COMAC). The single fuel assembly studies show that it is possible to represent the multiplication factor with a representativity factor greater than 0.98. As for reactivity variations, it is possible to achieve a satisfactory representativity factor of above 0.85 in all the presented cases. The representativity process demonstrates that temperature effects could be translated into density effects with good confidence. A complementary analysis on modified nuclear data covariance matrix demonstrates the importance of selecting consistent and robust uncertainties in the particle swarm optimization algorithm. This work provides insights on the behavior of the representativity scheme in different core states and shades some light on the problem in hand.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号