首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   20篇
化学工业   96篇
金属工艺   4篇
机械仪表   6篇
建筑科学   13篇
矿业工程   1篇
能源动力   16篇
轻工业   95篇
石油天然气   1篇
无线电   11篇
一般工业技术   26篇
冶金工业   11篇
自动化技术   40篇
  2024年   2篇
  2023年   8篇
  2022年   12篇
  2021年   22篇
  2020年   19篇
  2019年   19篇
  2018年   23篇
  2017年   15篇
  2016年   19篇
  2015年   7篇
  2014年   23篇
  2013年   27篇
  2012年   22篇
  2011年   14篇
  2010年   24篇
  2009年   13篇
  2008年   10篇
  2007年   13篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有320条查询结果,搜索用时 0 毫秒
11.
2,5-dimethylfuran (DMF) is a promising compound in the production of biofuel with high-quality properties. In this study, it is aimed to develop new efficient catalysts to synthesize DMF from 5-hydroxymethylfurfural (HMF). Co, Mn/Co, and Ru/Co catalysts were prepared using the NaBH4 reduction method. The catalysts were subjected to activity tests for the hydrogenation of HMF to DMF by changing the reaction parameters, such as temperature and time. Mn/Co catalysts prepared from metal precursors at various molar ratios of Mn/Co were found to be effective in hydrogenation reactions of HMF to DMF. A 91.8% DMF yield was achieved in the presence of a Mn/Co (50/50) catalyst without noble metal at 180°C for 4 hours. The Brunauer-Emmet-Teller (BET) method, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and induction coupled plasma mass spectroscopy (ICP-MS) techniques were used to characterize the efficient Mn/Co catalyst.  相似文献   
12.
Purpose: The purpose of the present study was to compare the Vickers hardness numbers (VHNs), roughness numbers (RNs) and biological compatibility of glass carbomer (Glass Fill), resin-modified glass ionomer (Fuji II LC) and self-adhering flowable composite (Vertise Flow) materials. Materials and methods: Disc-shaped specimens of test materials (n = 15/group) were prepared, and VHNs and RNs were determined after 24 h. A direct contact test was used for cytotoxicity evaluation. Cell viability was measured for 24 h post-exposition with a photometric test (MTT assay; n = 16). Data were analysed using one-way analysis of variance with a post hoc Tukey’s test, the Kruskal–Wallis test and the Mann–Whitney U-test (p < 0.05). Results: Fuji II LC had the highest VHN. The VHN of Fuji II LC differed significantly from those of the other materials (p < 0.05). The RNs of Fuji II and Glass Fill were higher than that of Vertise Flow (p < 0.05). The self-adhering materials were not significantly cytotoxic compared with the control group (p > 0.05). Conclusions: The materials tested in this study showed a similar lack of cytotoxicity. The VHN of Fuji II LC was the highest, and the RN of Vertise Flow was the lowest.  相似文献   
13.
Al2O3 and AlN powder mixtures were used to synthesise AlON ceramics using the reactive spark plasma sintering (SPS) method at temperatures between 1400 and 1650 °C for 15-45 min at 40 MPa under N2 gas flow. AlON phase formation was initiated in the samples sintered above 1430 °C, according to the X-ray analysis. The complete transformation of the initial phases (Al2O3 and AlN) into AlON was observed in the samples that were spark plasma sintered at 1650 °C for 30 min at 40 MPa. A high spark plasma sintering temperature together with a low heating rate produced a greater amount of AlON formation at a constant process time. The densification, microstructure and mechanical properties of the produced ceramics were analysed. The highest hardness value was recorded to be 16.7 GPa, and the fracture toughness of the sample with the highest AlON ratio was measured to be 3.95 MPa m1/2.  相似文献   
14.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
15.
In this study, biobased polyester-ether polyols derived from meso-lactide and dimer acids were evaluated for flexible polyurethane foams (PUF) applications. Initially, the catalyst concentration was optimized for the biobased PUF containing 30% of biobased polyol (70% petroleum-based polyol). Then, the same formulation was used for biobased PUF synthesis containing 10%–40% of biobased polyols. The performance of biobased PUF was compared with the performance of the control foam made with 100% petroleum-based polyol. The characteristic times (cream, top of the cup, string gel, rise, tack-free) of biobased PUF were determined. The biobased PUF were evaluated for the mechanical (tensile and compressive) and morphological properties. As the wet compression set is important for automotive applications, it was measured for all biobased PUF. The thermal degradation behavior of biobased PUF was also evaluated and compared with the control foam. The effect of different hydroxyl and acid values of polyols on the mechanical properties of biobased PUF is also discussed. The miscibility of all components of PUF formulations is crucial in order to produce a foam with uniform properties. Thus, the miscibility of biobased polyols with commercial petroleum-based polyol was studied.  相似文献   
16.
Advanced hybrid biocomposites are engineered from nylon 6, waste wood biosourced carbon (biocarbon) with a low content of synthetic fiber for lightweight auto-parts uses. The novel engineering process through direct injection molding of only 2 wt% synthetic fibers in the form of masterbatch with 20 wt% biocarbon, results outstanding performance of the resulting nylon biocomposites. Such uniquely developed biocomposites show tensile strength of 105 MPa and tensile modulus of 5.14 GPa with a remarkable heat deflection temperature (HDT) of 206 °C. The direct injection molding of synthetic fiber retains the length ≈3 times higher as compared to traditional extrusion and injection molding; resulting greater degree of entanglement and composite reinforcement effectiveness in the hybrid biocomposites. Highly dimensionally stable nylon 6 biocomposites with a very low coefficient of linear thermal expansion results through reinforcing ability of the sustainable biocarbon and small amount of synthetic fiber.  相似文献   
17.
Small molecule receptor-binding is dominated by weak, non-covalent interactions such as van-der-Waals hydrogen bonding or electrostatics. Calculating these non-covalent ligand-receptor interactions is a challenge to computational means in terms of accuracy and efficacy since the ligand may bind in a number of thermally accessible conformations. The conformational rotamer ensemble sampling tool (CREST) uses an iterative scheme to efficiently sample the conformational space and calculates energies using the semi-empirical ‘Geometry, Frequency, Noncovalent, eXtended Tight Binding’ (GFN2-xTB) method. This combined approach is applied to blind predictions of the modes and free energies of binding for a set of 10 drug molecule ligands to the cucurbit[n]urils CB[8] receptor from the recent ‘Statistical Assessment of the Modeling of Proteins and Ligands’ (SAMPL) challenge including morphine, hydromorphine, cocaine, fentanyl, and ketamine. For each system, the conformational space was sufficiently sampled for the free ligand and the ligand-receptor complexes using the quantum chemical Hamiltonian. A multitude of structures makes up the final conformer-rotamer ensemble, for which then free energies of binding are calculated. For those large and complex molecules, the results are in good agreement with experimental values with a mean error of 3 kcal/mol. The GFN2-xTB energies of binding are validated by advanced density functional theory calculations and found to be in good agreement. The efficacy of the automated QM sampling workflow allows the extension towards other complex molecular interaction scenarios.  相似文献   
18.
Mustafa Özilgen  Esra Sorgüven 《Energy》2011,36(10):5954-5967
Energy and exergy utilization and carbon dioxide emission during production of soybean, sunflower, and olive oils are assessed. In all cases, agriculture is the most energy and exergy intensive process and emits most of the carbon dioxide, and diesel is the dominant energy and exergy source. The cumulative degree of perfection (CDP) for soybean and olive oil is 0.92 and 0.98, respectively, whereas the CDP for the sunflower oil is 2.36. Decreasing diesel consumption with good agricultural practices and substituting with biodiesel from renewable resources would decrease the cumulative exergy consumption, as a result, CDP of olive and soybean oil rises to 1.6 and sunflower oil to 2.9.Major contribution to the carbon dioxide emission is due to the excessive use of fertilizers. The most energy intensive process is olive oil production. However, since the fertilizer consumption here is limited, total carbon dioxide emission is less than those of the other two processes are. On the other hand, excessive fertilizer consumption during the soybean agriculture results in a rather large CO2 emission.  相似文献   
19.
Abstract: The effect of Lactobacillus plantarum (FI8595), Lactococcus lactis subsp. cremoris MG 1363), Lactococcus lactis subsp. lactis (IL 1403), and Streptococcus thermophilus on cadaverine and other biogenic amine production by foodborne pathogens was investigated lysine decarboxylase broth. Both of lactic acid bacteria and foodborne pathogens used (especially Staphylococcus aureus, E. coli, Lc. lactis subsp. lactis and Lb. plantarum) had an ability to convert aminoacids into biogenic amine. The conversion of lysine into cadaverine was the highest (167.11 mg/L) by Lactobacillus spp. Gram‐positive bacteria generally had a greater ability to produce cadaverine with corresponding value of 46.26, 53.76, and 154.54 mg/L for Enterococcus faecalis, S. aureus, and Listeria monocytogenes, respectively. Significant variations on biogenic amine production were observed in the presence of lactic acid bacteria strains (P < 0.05). The role of lactic acid bacteria on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine accumulation by Enterobactericeae was increased in the presence of lactic acid bacteria strains except for St. thermophilus, which induced 2‐fold lower cadaverine production by S. Paratyphi A. Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris induced 10‐fold higher increases in histamine for E. coli and K. pneumoniae, respectively. Lactic acid bacteria resulted in strong increases in cadaverine production by P. aeruginosa, although remarkable decreases were observed for histamine, spermidine, dopamine, agmatine, and TMA in the presence of lactic acid bacteria in lysine decarboxylase broth . The result of the study showed that amine positive lactic acid bacteria strains in fermented food led to significant amine accumulation by contaminant bacteria and their accumulation in food product may be controlled by the use of proper starters with amine‐negative activity. Practical Application: Foodborne pathogens and certain lactic acid bacteria are particularly active in the production of biogenic amines. Most of the strains of bacteria possess more than 1 amino acid decarboxylase activity under lysine enrichment culture conditions. Lactic acid bacteria strains had a significant role on increase putrescine accumulation by foodborne pathogens. The increased production of biogenic amines in mixed culture is the result of presence of amine positive lactic acid bacteria strains. The addition of a proper selected starter culture with amine‐negative activity is advisable to produce safer fermented food with low contents of biogenic amines.  相似文献   
20.
Effects of ozone on functional properties of proteins   总被引:1,自引:0,他引:1  
The present study investigates whether the ozone treatment could be an alternative to improve some functional properties of proteins. Ozone treatment was applied on whey protein isolate and egg white proteins which have been extensively used in food products to improve textural, functional and sensory attributes. Ozone treatment of proteins was performed either in aqueous solutions or as gas ozonation of pure protein powders. Foam formation and foam stability of proteins were enhanced extensively. The solubility of proteins were reduced as influenced from the aqueous and gas ozonation medium. The reduction was more pronounced in egg white proteins. Ozone treatment affected emulsion activity of whey protein isolate negatively and reduced the emulsion stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号