首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400902篇
  免费   43644篇
  国内免费   33087篇
电工技术   31941篇
技术理论   38篇
综合类   35831篇
化学工业   64507篇
金属工艺   16756篇
机械仪表   23136篇
建筑科学   38438篇
矿业工程   14836篇
能源动力   13641篇
轻工业   29005篇
水利工程   12981篇
石油天然气   15603篇
武器工业   5087篇
无线电   43085篇
一般工业技术   35789篇
冶金工业   15131篇
原子能技术   4784篇
自动化技术   77044篇
  2024年   1628篇
  2023年   5607篇
  2022年   10782篇
  2021年   13939篇
  2020年   13120篇
  2019年   10835篇
  2018年   9988篇
  2017年   13140篇
  2016年   15342篇
  2015年   17419篇
  2014年   24147篇
  2013年   25332篇
  2012年   30043篇
  2011年   33535篇
  2010年   24565篇
  2009年   24546篇
  2008年   24617篇
  2007年   28672篇
  2006年   26634篇
  2005年   23065篇
  2004年   19379篇
  2003年   15949篇
  2002年   12601篇
  2001年   9972篇
  2000年   8379篇
  1999年   6783篇
  1998年   5177篇
  1997年   4329篇
  1996年   3485篇
  1995年   2891篇
  1994年   2458篇
  1993年   1828篇
  1992年   1461篇
  1991年   1103篇
  1990年   946篇
  1989年   779篇
  1988年   505篇
  1987年   354篇
  1986年   310篇
  1985年   401篇
  1984年   327篇
  1983年   244篇
  1982年   253篇
  1981年   162篇
  1980年   170篇
  1979年   60篇
  1978年   36篇
  1977年   44篇
  1975年   27篇
  1959年   43篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
11.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
12.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
13.
《Ceramics International》2022,48(15):21483-21491
To battle the high open-circuit voltage deficit (VOC,def) in kesterite (Cu2ZnSnS4 or CZTS) solar cells, a current field of research relates to point defect engineering by cation substitution. For example, by partly replacing Cu with an element of a larger ionic radius, such as Ag, the degree of Cu/Zn disorder decreases, and likewise does the associated band tailing. In this paper, solution-processed (Ag1-xCux)2ZnSnS4 (ACZTS) samples are prepared through the aprotic molecular ink approach using DMSO as the solvent. The successful incorporation of silver into the CZTS lattice is demonstrated with relatively high silver concentrations, namely Ag/(Ag+Cu) ratios of 13% and 26%. The best device was made with 13% Ag/(Ag+Cu) and had an efficiency of 4.9%. The samples are compared to the pure CZTS sample in terms of microstructure, phase distribution, photoluminescence, and device performance. In the XRD patterns, a decrease in the lattice parameter c/a ratio is observed for ACZTS, as well as significant peak splitting with Ag addition for several of the characteristic kesterite XRD reflections. In addition to the improvement in efficiency, other advantageous effects of Ag-incorporation include enhanced grain growth and an increased band gap. A too high concentration of Ag leads to the formation of secondary phases such as SnS and Ag2S as detected by XRD.  相似文献   
14.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
15.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
16.
Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the manufacture of polyvinylchloride plastics and has been associated with concerns regarding male reproductive toxicity. In this study, we hypothesized that maternal exposure to DEHP induces transgenerational inheritance of adult-onset adverse reproductive outcomes through the male germline in the F1, F2, and F3 generations of male offspring. Pregnant rats were treated with 5 or 500 mg of DEHP/kg/day through gavage from gestation day 0 to birth. The offspring body weight, anogenital distance (AGD), anogenital index (AGI), sperm count, motility, and DNA fragmentation index (DFI) were measured for all generations. Methyl-CpG binding domain sequencing was performed to analyze sperm DNA methylation status in the F3. DEHP exposure at 500 mg/kg affected AGD, AGI, sperm count, mean DFI, and %DFI in the F1; AGD, sperm count, and mean DFI in the F2; and AGD, AGI, mean DFI, and %DFI in the F3. DEHP exposure at 5 mg/kg affected AGD, AGI, sperm count, and %DFI in the F1; sperm count in the F2; and AGD and AGI in F3. Compared with the control group, 15 and 45 differentially hypermethylated genes were identified in the groups administered 5 mg/kg and 500 mg/kg DEHP, respectively. Moreover, 130 and 6 differentially hypomethylated genes were observed in the groups administered 5 mg/kg and 500 mg/kg DEHP. Overall, these results demonstrated that prenatal exposure to DEHP caused transgenerational epigenetic effects, which may explain the observed phenotypic changes in the male reproductive system.  相似文献   
17.
The number of clinical trials evaluating adipose-derived mesenchymal stem cells (AD-MSCs), platelet-rich plasma (PRP), and biomaterials efficacy in regenerative plastic surgery has exponentially increased during the last ten years. AD-MSCs are easily accessible from various fat depots and show intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. AD-MSCs have been used in the treatment of soft tissue defects and chronic wounds, employed in conjunction with a fat grafting technique or with dermal substitute scaffolds and platelet-rich plasma. In this systematic review, an overview of the current knowledge on this topic has been provided, based on existing studies and the authors’ experience. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, PRP, and biomaterials used in soft tissue defects and chronic wounds. Of the 2136 articles initially identified, 422 articles focusing on regenerative strategies in wound healing were selected and, consequently, only 278 articles apparently related to AD-MSC, PRP, and biomaterials were initially assessed for eligibility. Of these, 85 articles were excluded as pre-clinical, experimental, and in vitro studies. For the above-mentioned reasons, 193 articles were selected; of this amount, 121 letters, expert opinions, commentary, and editorials were removed. The remaining 72 articles, strictly regarding the use of AD-MSCs, PRP, and biomaterials in chronic skin wounds and soft tissue defects, were analyzed. The studies included had to match predetermined criteria according to the patients, intervention, comparator, outcomes, and study design (PICOS) approach. The information analyzed highlights the safety and efficacy of AD-MSCs, PRP, and biomaterials on soft tissue defects and chronic wounds, without major side effects.  相似文献   
18.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
19.
Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences.  相似文献   
20.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号