首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25005篇
  免费   5074篇
  国内免费   4306篇
电工技术   1406篇
技术理论   2篇
综合类   2717篇
化学工业   850篇
金属工艺   324篇
机械仪表   860篇
建筑科学   559篇
矿业工程   139篇
能源动力   303篇
轻工业   327篇
水利工程   126篇
石油天然气   166篇
武器工业   100篇
无线电   2689篇
一般工业技术   1538篇
冶金工业   1948篇
原子能技术   29篇
自动化技术   20302篇
  2024年   500篇
  2023年   1975篇
  2022年   3123篇
  2021年   3057篇
  2020年   2463篇
  2019年   1648篇
  2018年   1185篇
  2017年   1036篇
  2016年   1086篇
  2015年   1083篇
  2014年   1472篇
  2013年   1281篇
  2012年   1306篇
  2011年   1556篇
  2010年   1270篇
  2009年   1266篇
  2008年   1278篇
  2007年   1168篇
  2006年   991篇
  2005年   928篇
  2004年   717篇
  2003年   606篇
  2002年   552篇
  2001年   411篇
  2000年   365篇
  1999年   286篇
  1998年   275篇
  1997年   234篇
  1996年   189篇
  1995年   153篇
  1994年   121篇
  1993年   116篇
  1992年   94篇
  1991年   51篇
  1990年   48篇
  1989年   46篇
  1988年   34篇
  1987年   28篇
  1986年   41篇
  1966年   14篇
  1965年   24篇
  1964年   25篇
  1963年   23篇
  1962年   12篇
  1961年   17篇
  1959年   15篇
  1958年   16篇
  1957年   22篇
  1956年   13篇
  1955年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
3.
5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。  相似文献   
4.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
5.
边坡位移的时间序列曲线存在复杂的非线性特性,传统的预测模型精度不足以满足预测要求。为此提出了基于变分模态分解的鸟群优化-核极限学习机的预测模型,并用于河北省某水泥厂的边坡位移预测。该方法首先采用VMD把边坡位移序列分解为一系列的有限带宽的子序列,再对各子序列分别采用相空间重构并用核极限学习机预测,采用鸟群算法优化相空间重构的嵌入维度和KELM中惩罚系数和核参数三个数值,以取得最优预测模型。最后将各个子序列预测值叠加,得到边坡位移的最终预测值。结果表明:和KELM、BSA-KELM、EEMD-BSA-KELM模型相比,基于VMD的BSA-KELM预测精度更高,为边坡位移的预测提供一种有效的方法。  相似文献   
6.
In the Internet of Things (IoT), a huge amount of valuable data is generated by various IoT applications. As the IoT technologies become more complex, the attack methods are more diversified and can cause serious damages. Thus, establishing a secure IoT network based on user trust evaluation to defend against security threats and ensure the reliability of data source of collected data have become urgent issues, in this paper, a Data Fusion and transfer learning empowered granular Trust Evaluation mechanism (DFTE) is proposed to address the above challenges. Specifically, to meet the granularity demands of trust evaluation, time–space empowered fine/coarse grained trust evaluation models are built utilizing deep transfer learning algorithms based on data fusion. Moreover, to prevent privacy leakage and task sabotage, a dynamic reward and punishment mechanism is developed to encourage honest users by dynamically adjusting the scale of reward or punishment and accurately evaluating users’ trusts. The extensive experiments show that: (i) the proposed DFTE achieves high accuracy of trust evaluation under different granular demands through efficient data fusion; (ii) DFTE performs excellently in participation rate and data reliability.  相似文献   
7.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
8.
In this paper, we strive to propose a self-interpretable framework, termed PrimitiveTree, that incorporates deep visual primitives condensed from deep features with a conventional decision tree, bridging the gap between deep features extracted from deep neural networks (DNNs) and trees’ transparent decision-making processes. Specifically, we utilize a codebook, which embeds the continuous deep features into a finite discrete space (deep visual primitives) to distill the most common semantic information. The decision tree adopts the spatial location information and the mapped primitives to present the decision-making process of the deep features in a tree hierarchy. Moreover, the trained interpretable PrimitiveTree can inversely explain the constituents of the deep features, highlighting the most critical and semantic-rich image patches attributing to the final predictions of the given DNN. Extensive experiments and visualization results validate the effectiveness and interpretability of our method.  相似文献   
9.
Prognostics and health management of proton exchange membrane fuel cell (PEMFC) systems have driven increasing research attention in recent years as the durability of PEMFC stack remains as a technical barrier for its large-scale commercialization. To monitor the health state during PEMFC operation, digital twin (DT), as a smart manufacturing technique, is applied in this paper to establish an ensemble remaining useful life prediction system. A data-driven DT is constructed to integrate the physical knowledge of the system and a deep transfer learning model based on stacked denoising autoencoder is used to update the DT with online measurement. A case study with experimental PEMFC degradation data is presented where the proposed data-driven DT prognostics method has applied and reached a high prediction accuracy. Furthermore, the predicted results are proved to be less affected even with limited measurement data.  相似文献   
10.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号