首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90416篇
  免费   7261篇
  国内免费   3746篇
电工技术   5051篇
技术理论   3篇
综合类   5838篇
化学工业   15384篇
金属工艺   4867篇
机械仪表   5682篇
建筑科学   7525篇
矿业工程   2426篇
能源动力   2690篇
轻工业   5802篇
水利工程   1519篇
石油天然气   5711篇
武器工业   726篇
无线电   10258篇
一般工业技术   11177篇
冶金工业   4408篇
原子能技术   998篇
自动化技术   11358篇
  2024年   384篇
  2023年   1468篇
  2022年   2548篇
  2021年   3486篇
  2020年   2757篇
  2019年   2263篇
  2018年   2522篇
  2017年   2850篇
  2016年   2495篇
  2015年   3343篇
  2014年   4369篇
  2013年   5116篇
  2012年   5494篇
  2011年   6103篇
  2010年   5252篇
  2009年   5013篇
  2008年   4919篇
  2007年   4655篇
  2006年   4790篇
  2005年   4132篇
  2004年   2912篇
  2003年   2593篇
  2002年   2565篇
  2001年   2209篇
  2000年   2184篇
  1999年   2493篇
  1998年   2234篇
  1997年   1891篇
  1996年   1777篇
  1995年   1460篇
  1994年   1161篇
  1993年   930篇
  1992年   721篇
  1991年   492篇
  1990年   447篇
  1989年   327篇
  1988年   259篇
  1987年   176篇
  1986年   145篇
  1985年   99篇
  1984年   82篇
  1983年   65篇
  1982年   62篇
  1981年   39篇
  1980年   35篇
  1979年   16篇
  1978年   8篇
  1977年   10篇
  1976年   12篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this paper, a novel hybrid structure of Pd doped ZnO/SnO2 heterojunction nanofibers with hexagonal ZnO columns was one step synthesized from electrospun precursor nanofibers. Due to the synergistic effect of hexagonal ZnO, SnO2 and Pd, the structure exhibited excellent hydrogen (H2) gas sensing properties. At low-temperature of 120 °C, the response (Ra/Rg) to 100 ppm H2 gas exceeded 160, the response/recovery time was only 20 s and 6 s respectively and the limit of detection was only 0.5 ppm. Meanwhile, it also had good selectivity for H2 gas and excellent linearity. In addition, the materials were characterized by XRD, FESEM, HRTEM, XPS, and the synthesis mechanism and gas sensing mechanism were proposed.  相似文献   
2.
The effects of cellulose microfibres (CMFs, Average size: 100 ± 5 μm) and cellulose nanofibres (CNFs, Average size: 60 ± 3 nm) on the properties of myofibrillar protein (MP) gels from duck breast meat were studied. The results demonstrated that CMFs and CNFs were mostly connected to MP by non-covalent bonds, the diffusion and cross-linking of MP molecules was promoted, and a denser and more complete gel network was formed. With the increases of CMFs and CNFs concentration (0–10%), the hardness was increased by 13.15% and 19.78% for CMFs10% and CNFs10% gels, respectively, and the elasticity was increased by 40% and 80%, respectively. At the same concentration (0–10%), the increase in gel hardness, viscoelasticity and immobilised water content was greater in the CNFs-MP group than in the CMFs-MP group. The CNFs-MP group had a tighter gel network, and CNFs had a better potential to improve the gelation performance of MP.  相似文献   
3.
Ceramic microparticles have great potentials in various fields such as materials engineering, biotechnology, microelectromechanical systems, etc. Morphology of the microparticle performs an important role on their application. To date, it remains difficult to find an effective and controllable way for fabricating nonspherical ceramic microparticles with 3D features. This work demonstrates a method that combines UV light lithography and single emulsion opaque-droplet-templated microfluidic molding to prepare the crescent-shaped ceramic microparticles. By tailoring the intensity of UV light and flow rate of fluid, the shapes of microparticles are accordingly tuned. Therefore, varieties of crescent-shaped microparticles and their variations have been fabricated. After sintering, the crescent-shaped alumina ceramic microparticles were obtained. Benefitting from the light absorption and scattering behavior of most ceramic nanoparticles, this system can serve as a general platform to produce crescent-shaped microparticles made from different materials, and hold great potentials for applications in microrobotics, structural materials in MEMS, and biotechnology.  相似文献   
4.
5.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
6.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
7.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
8.
Walnut flour (WF), a by-product of walnut oil production, is characterised by high polyunsaturated fatty acids, proteins, and fibre contents and presents suitability for bakery products. However, when using non-traditional ingredients, it is essential to evaluate the effect on the quality properties of the final product. So, this work aimed to assess the impact of WF on the technological, physicochemical, and sensory properties of gluten-free (GF) cakes. WF was added at a flour blend (cassava (CS) and maize (MS) starches and rice flour) at 0, 10%, 15%, and 20%. The results showed that WF modified starch gelatinisation, increased amylose–lipid complex (ALC) content, and made crumbs easier to chew. Besides, the total dietary fibre (TDF) and protein content significantly increased. Cakes with 15% WF presented the highest specific volume (SV) and no differences in overall acceptability with respect to control. Hence, WF is a suitable ingredient for gluten-free bakery products.  相似文献   
9.
Wheat bran is rich in functional ingredients, but the high level of lipase limits its applications. Tempering–preservation treatment (at 70–90 °C with moisture of 20%–40% for 1–4 h) was exploited for stabilising wheat bran and its effect on polyphenols was investigated. The results showed that more lipase was inactivated at higher tempering moisture, temperature and longer time. The optimum condition for inactivation of wheat bran lipase was 30% moisture and 90 °C for 4 h. The inactivation rate reached 93.8% with a residual enzyme activity of 0.264 U g−1. Under the optimum condition, the sum of free phenolic acids rose from 25.4 to 55.8 µg g−1. As for bound phenolic acids, there was a slight increase of hydroxybenzoic acid derivatives but a slight decrease of hydroxycinnamic acid derivatives. The total contents of phenolic acids before and after stabilisation were not significantly different. This study showed the possibility of using tempering–preservation as an efficient method for inactivation of wheat bran lipase while maintaining its phenolic compounds, which could be used in the production of whole wheat flour.  相似文献   
10.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号