首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240208篇
  免费   30303篇
  国内免费   26150篇
电工技术   26359篇
技术理论   12篇
综合类   17623篇
化学工业   43492篇
金属工艺   10670篇
机械仪表   16590篇
建筑科学   11443篇
矿业工程   3785篇
能源动力   12661篇
轻工业   18814篇
水利工程   3943篇
石油天然气   6030篇
武器工业   2602篇
无线电   32289篇
一般工业技术   25279篇
冶金工业   6108篇
原子能技术   3507篇
自动化技术   55454篇
  2024年   1128篇
  2023年   4101篇
  2022年   7888篇
  2021年   9060篇
  2020年   8641篇
  2019年   7714篇
  2018年   6976篇
  2017年   9327篇
  2016年   10149篇
  2015年   11628篇
  2014年   12694篇
  2013年   15416篇
  2012年   18258篇
  2011年   20380篇
  2010年   14573篇
  2009年   14298篇
  2008年   15316篇
  2007年   17441篇
  2006年   16420篇
  2005年   14031篇
  2004年   11789篇
  2003年   9558篇
  2002年   7414篇
  2001年   5845篇
  2000年   4909篇
  1999年   4065篇
  1998年   3306篇
  1997年   2700篇
  1996年   2134篇
  1995年   1766篇
  1994年   1581篇
  1993年   1144篇
  1992年   962篇
  1991年   750篇
  1990年   608篇
  1989年   471篇
  1988年   377篇
  1987年   247篇
  1986年   212篇
  1985年   278篇
  1984年   231篇
  1983年   165篇
  1982年   218篇
  1981年   111篇
  1980年   110篇
  1979年   34篇
  1978年   21篇
  1977年   33篇
  1976年   21篇
  1959年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   
2.
Small object detection is challenging and far from satisfactory. Most general object detectors suffer from two critical issues with small objects: (1) Feature extractor based on classification network cannot express the characteristics of small objects reasonably due to insufficient appearance information of targets and a large amount of background interference around them. (2) The detector requires a much higher location accuracy for small objects than for general objects. This paper proposes an effective and efficient small object detector YOLSO to address the above problems. For feature representation, we analyze the drawbacks in previous backbones and present a Half-Space Shortcut(HSSC) module to build a background-aware backbone. Furthermore, a coarse-to-fine Feature Pyramid Enhancement(FPE) module is introduced for layer-wise aggregation at a granular level to enhance the semantic discriminability. For loss function, we propose an exponential L1 loss to promote the convergence of regression, and a focal IOU loss to focus on prime samples with high classification confidence and high IOU. Both of them significantly improves the location accuracy of small objects. The proposed YOLSO sets state-of-the-art results on two typical small object datasets, MOCOD and VeDAI, at a speed of over 200 FPS. In the meantime, it also outperforms the baseline YOLOv3 by a wide margin on the common COCO dataset.  相似文献   
3.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
4.
5.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
6.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
7.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
8.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
9.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
10.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号