首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47394篇
  免费   5769篇
  国内免费   2222篇
电工技术   4949篇
技术理论   5篇
综合类   3828篇
化学工业   10387篇
金属工艺   1312篇
机械仪表   2114篇
建筑科学   4956篇
矿业工程   964篇
能源动力   5667篇
轻工业   1229篇
水利工程   4025篇
石油天然气   1536篇
武器工业   291篇
无线电   3591篇
一般工业技术   4425篇
冶金工业   1502篇
原子能技术   941篇
自动化技术   3663篇
  2024年   227篇
  2023年   798篇
  2022年   1394篇
  2021年   1631篇
  2020年   1670篇
  2019年   1391篇
  2018年   1253篇
  2017年   1427篇
  2016年   1588篇
  2015年   1727篇
  2014年   3010篇
  2013年   2969篇
  2012年   3365篇
  2011年   3706篇
  2010年   2732篇
  2009年   2721篇
  2008年   2586篇
  2007年   2971篇
  2006年   2707篇
  2005年   2474篇
  2004年   2093篇
  2003年   1903篇
  2002年   1521篇
  2001年   1235篇
  2000年   1064篇
  1999年   845篇
  1998年   741篇
  1997年   619篇
  1996年   535篇
  1995年   479篇
  1994年   359篇
  1993年   314篇
  1992年   275篇
  1991年   184篇
  1990年   164篇
  1989年   152篇
  1988年   107篇
  1987年   75篇
  1986年   72篇
  1985年   49篇
  1984年   67篇
  1983年   41篇
  1982年   28篇
  1981年   13篇
  1980年   10篇
  1979年   8篇
  1978年   5篇
  1966年   7篇
  1959年   17篇
  1951年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
3.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
4.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
5.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
6.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   
7.
8.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
9.
《Journal of dairy science》2022,105(5):4314-4323
We tested the hypothesis that the size of a beef cattle population destined for use on dairy females is smaller under optimum-contribution selection (OCS) than under truncation selection (TRS) at the same genetic gain (ΔG) and the same rate of inbreeding (ΔF). We used stochastic simulation to estimate true ΔG realized at a 0.005 ΔF in breeding schemes with OCS or TRS. The schemes for the beef cattle population also differed in the number of purebred offspring per dam and the total number of purebred offspring per generation. Dams of the next generation were exclusively selected among the one-year-old heifers. All dams were donors for embryo transfer and produced a maximum of 5 or 10 offspring. The total number of purebred offspring per generation was: 400, 800, 1,600 or 4,000 calves, and it was used as a measure of population size. Rate of inbreeding was predicted and controlled using pedigree relationships. Each OCS (TRS) scheme was simulated for 10 discrete generations and replicated 100 (200) times. The OCS scheme and the TRS scheme with a maximum of 10 offspring per dam required approximately 783 and 1,257 purebred offspring per generation to realize a true ΔG of €14 and a ΔF of 0.005 per generation. Schemes with a maximum of 5 offspring per dam required more purebred offspring per generation to realize a similar true ΔG and a similar ΔF. Our results show that OCS and multiple ovulation and embryo transfer act on selection intensity through different mechanisms to achieve fewer selection candidates and fewer selected sires and dams than under TRS at the same ΔG and a fixed ΔF. Therefore, we advocate the use of a breeding scheme with OCS and multiple ovulation and embryo transfer for beef cattle destined for use on dairy females because it is favorable both from an economic perspective and a carbon footprint perspective.  相似文献   
10.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号