首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358863篇
  免费   30186篇
  国内免费   18360篇
电工技术   29970篇
技术理论   64篇
综合类   42912篇
化学工业   41003篇
金属工艺   13075篇
机械仪表   18542篇
建筑科学   48844篇
矿业工程   17700篇
能源动力   25641篇
轻工业   17315篇
水利工程   15681篇
石油天然气   14561篇
武器工业   3309篇
无线电   25362篇
一般工业技术   27626篇
冶金工业   19746篇
原子能技术   4556篇
自动化技术   41502篇
  2024年   1174篇
  2023年   4370篇
  2022年   8026篇
  2021年   9499篇
  2020年   9851篇
  2019年   8437篇
  2018年   7636篇
  2017年   9134篇
  2016年   10967篇
  2015年   11790篇
  2014年   21090篇
  2013年   19534篇
  2012年   24165篇
  2011年   26824篇
  2010年   21045篇
  2009年   21536篇
  2008年   19894篇
  2007年   24844篇
  2006年   22796篇
  2005年   19406篇
  2004年   16487篇
  2003年   14776篇
  2002年   12263篇
  2001年   10386篇
  2000年   8814篇
  1999年   7145篇
  1998年   5477篇
  1997年   4725篇
  1996年   4396篇
  1995年   3644篇
  1994年   3268篇
  1993年   2440篇
  1992年   2106篇
  1991年   1626篇
  1990年   1417篇
  1989年   1225篇
  1988年   975篇
  1987年   681篇
  1986年   513篇
  1985年   506篇
  1984年   463篇
  1983年   336篇
  1982年   330篇
  1981年   220篇
  1980年   183篇
  1979年   142篇
  1978年   79篇
  1977年   83篇
  1976年   58篇
  1975年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
2.
In a typical embedded CPU, large on-chip storage is critical to meet high performance requirements. However, the fast increasing size of the on-chip storage based on traditional SRAM cells makes the area cost and energy consumption unsustainable for future embedded applications. Replacing SRAM with DRAM on the CPU’s chip is generally considered not worthwhile because DRAM is not compatible with the common CMOS logic and requires additional processing steps beyond what is required for CMOS. However a special DRAM technology, Gain-Cell embedded-DRAM (GC-eDRAM)  [1], [2], [3] is logic compatible and retains some of the good properties of DRAM (small and low power). In this paper we evaluate the performance of a novel hybrid cache memory where the data array, generally populated with SRAM cells, is replaced with GC-eDRAM cells while the tag array continues to use SRAM cells. Our evaluation of this cache demonstrates that, compared to the conventional SRAM-based designs, our novel architecture exhibits comparable performance with less energy consumption and smaller silicon area, enabling the sustainable on-chip storage scaling for future embedded CPUs.  相似文献   
3.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
4.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
5.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
6.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
7.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
8.
This article provides a critical assessment of H2 from the standpoint of more widespread use as a sustainable fuel for Indian mobility applications in the global context. The potential techno-economic advantages of utilizing H2 for automobiles rather than battery electric vehicles or conventional internal combustion engine vehicles are emphasized. The present assessment demonstrates that H2 production, storage, and distribution costs are the primary challenges, and a significant improvement is still necessary for H2 to compete either against the internal combustion engine vehicle or the battery electric vehicle to win the race, arguably. The secondary challenges have also been demonstrated, which include the cost of the fuel cell stack and the modifications associated with internal combustion engine vehicles, as well as regulatory and safety concerns, which impede the widespread usage of H2. It is critical that policy-making for sustainable mobility in India is possible with the aid of a National H2 Energy Road-Map. This in turn can achieve a cost target of $0.5/kg for H2.  相似文献   
9.
Aiming at improving the relatively low energy output and energy conversion efficiency of the micro-thermal voltaic (MTPV) system, an innovative heat recirculating micro combustor with pin fins is designed. The effects of pin fins arrangement, hydrogen/air equivalent ratio on the energy output and performance of CHMC, HMCP and HMCI are compared and investigated. The result shows that when the Vin is 6 m/s and Φ is 1.0, the emitter power of CHMC is 72.76W, and that of HCMP and HCMI micro combustor are 75.99W and 76.35W. and the emitter efficiency of CHMC, HCMP and HCMI is 41.93%, 43.26% and 44.01%. HMCI has better energy output capability compared with CHMC and HMCP. Even though, HMCI brings a higher pressure drop, it is within the acceptable range. When the Vin is 6 m/s, the pressure drop from the pin fins only accounts for 26.4% of the total pressure drop for HMCI. Through the study of equivalent ratio, it is found that HMCI has good adaptability in different equivalent ratio range. This work provides new ideas for the development of MTPV system in the future.  相似文献   
10.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号