首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25141篇
  免费   2412篇
  国内免费   700篇
电工技术   136篇
综合类   1302篇
化学工业   8098篇
金属工艺   616篇
机械仪表   195篇
建筑科学   703篇
矿业工程   245篇
能源动力   980篇
轻工业   10846篇
水利工程   176篇
石油天然气   983篇
武器工业   26篇
无线电   368篇
一般工业技术   1503篇
冶金工业   873篇
原子能技术   271篇
自动化技术   932篇
  2024年   134篇
  2023年   530篇
  2022年   965篇
  2021年   1243篇
  2020年   1011篇
  2019年   969篇
  2018年   934篇
  2017年   993篇
  2016年   1074篇
  2015年   960篇
  2014年   1387篇
  2013年   1756篇
  2012年   1818篇
  2011年   2046篇
  2010年   1408篇
  2009年   1402篇
  2008年   1207篇
  2007年   1412篇
  2006年   1178篇
  2005年   881篇
  2004年   733篇
  2003年   730篇
  2002年   556篇
  2001年   463篇
  2000年   411篇
  1999年   336篇
  1998年   251篇
  1997年   213篇
  1996年   192篇
  1995年   165篇
  1994年   155篇
  1993年   131篇
  1992年   124篇
  1991年   78篇
  1990年   76篇
  1989年   52篇
  1988年   47篇
  1987年   36篇
  1986年   38篇
  1985年   25篇
  1984年   23篇
  1983年   13篇
  1982年   8篇
  1980年   22篇
  1965年   5篇
  1964年   5篇
  1961年   5篇
  1959年   7篇
  1958年   5篇
  1956年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Herein, molybdenum disulfide nanoflakes decorated copper phthalocyanine microrods (CuPc-MoS2) are synthesized via two step simple hydrothermal method. The as synthesized hybrid along with pure molybdenum disulfide (MoS2) nanoflower and pure copper phthalocyanine (CuPc) microrods are well characterized by various techniques that confirm phase, morphology, elemental compositions etc. Next, electrocatalytic oxygen reduction reaction towards fuel cell is investigated in alkaline medium and obtained results proclaim that our CuPc-MoS2 heterostructure outperforms the other two constituent materials. Efficient oxygen reduction is achieved following four electron pathway by CuPc-MoS2 whereas partial reduction is done through two electron process by CuPc and MoS2 separately. Long-time durability test reveals almost 97.6% retention after 8000s that eventually dictate us that CuPc-MoS2 heterostructure can be the efficient cathode electrocatalyst for future generation fuel cell.  相似文献   
2.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
3.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
4.
5.
6.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
7.
《Journal of dairy science》2022,105(12):9463-9475
Phenyllactic acid (PLA) has been demonstrated to possess antibacterial activity and capacity to prolong food shelf life. However, studies on the performance of PLA in inhibiting Staphylococcus aureus and its effectiveness when applied to dairy products are largely lacking. Here, antibacterial activity (planktonic and biofilm states) of PLA against S. aureus CICC10145 (S. aureus_45) were investigated. The results showed that PLA inhibited growth of S. aureus_45 and formation of S. aureus_45 biofilm. Next, the antibacterial action target of PLA was uncovered from both physiological and phenotypic perspectives. The results showed that PLA decreased cell metabolic activity and cell viability, damaged cell membrane integrity, triggered leakage of intracellular contents (DNA, proteins, and ATP), and caused oxidative stress damage and morphological deformation of S. aureus_45. In practical application, the antibacterial activity of PLA against S. aureus_45 cells was further confirmed in skim milk and cheese as dairy food models, and the antibacterial effects can be adequately maintained during storage for 21 d, at least at 4°C. These findings suggested that PLA could be a potential candidate for controlling S. aureus outgrowth in dairy foods.  相似文献   
8.
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood–brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).  相似文献   
9.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
10.
《Ceramics International》2021,47(23):32521-32533
In the current report, pure V2O5, a series of Gd doped V2O5 (1 wt%, 3 wt%, 5 wt% and 10 wt%) and graphene integrated Gd–V2O5 photocatalysts have been prepared using a facile wet chemical approach. The effect of Gd+3 ions substitution and RGO support on V2O5 was studied by the different analytical techniques. X-ray diffraction (XRD) results showed the orthorhombic crystal structure of synthesized samples with crystallize size in range of 22–35 nm. Morphological analysis showed nanorods and nanorod arrays like appearance of V2O5, Gd–V2O5 and GdV-2O5/RGO, respectively. Gd–V2O5 and Gd–V2O5/RGO exhibited enhanced optical response in the visible region along with decrease in the band gap values for Gd doped V2O5 samples. BET surface area of Gd–V2O5 and Gd- V2O5/RGO was calculated as 12.39 g/m2 and 15.35 g/m2 that was found to be higher than pristine V2O5. To study the photocatalytic activity of synthesized photocatalysts, methylene blue (MB) was chosen as model pollutant. Among the Gd doped V2O5 samples, highest photocatalytic activity (45.62%) was achieved by optimal concentration of 5 wt% Gd–V2O5 that is accredited to effective separation of electron-hole pairs. While Gd–V2O5/RGO showed 2.1 times higher dye removal (97.12%) than unsupported Gd–V2O5, under the visible light irradiation. The significantly high photocatalytic activity of Gd–V2O5/RGO is due to the synergistic effect aroused by combined action of Gd+3 ions doping and advantageous properties of highly conductive and large surfaced graphene. Recycling experiments for V2O5 derivatives showed good stability and recyclability of photocatalysts. Additionally, Gd–V2O5/RGO was found to be more potential anti-bacterial agent than V2O5 and Gd–V2O5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号