首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287500篇
  免费   25830篇
  国内免费   15165篇
电工技术   39200篇
技术理论   24篇
综合类   29560篇
化学工业   21965篇
金属工艺   13757篇
机械仪表   21229篇
建筑科学   24383篇
矿业工程   9969篇
能源动力   20445篇
轻工业   12068篇
水利工程   7695篇
石油天然气   9814篇
武器工业   4283篇
无线电   24314篇
一般工业技术   18994篇
冶金工业   10554篇
原子能技术   3313篇
自动化技术   56928篇
  2024年   1156篇
  2023年   3413篇
  2022年   6320篇
  2021年   7659篇
  2020年   8132篇
  2019年   6195篇
  2018年   5604篇
  2017年   7377篇
  2016年   8513篇
  2015年   9615篇
  2014年   17961篇
  2013年   15802篇
  2012年   20915篇
  2011年   22207篇
  2010年   16673篇
  2009年   16730篇
  2008年   16371篇
  2007年   21138篇
  2006年   19127篇
  2005年   16948篇
  2004年   14139篇
  2003年   12636篇
  2002年   9984篇
  2001年   8318篇
  2000年   6900篇
  1999年   5611篇
  1998年   4281篇
  1997年   3534篇
  1996年   3095篇
  1995年   2606篇
  1994年   2181篇
  1993年   1538篇
  1992年   1331篇
  1991年   916篇
  1990年   743篇
  1989年   652篇
  1988年   461篇
  1987年   296篇
  1986年   201篇
  1985年   206篇
  1984年   193篇
  1983年   164篇
  1982年   138篇
  1981年   86篇
  1980年   70篇
  1979年   56篇
  1978年   40篇
  1977年   37篇
  1959年   48篇
  1951年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
2.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
3.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
4.
5.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
6.
This study investigated the inhibitory effects of curcumin and piperine on fluorescent advanced glycation end products (fAGEs) formation in a bovine serum albumin (BSA)–fructose model. Model systems of BSA and fructose were prepared, and curcumin or piperine was added. fAGEs and BSA oxidation product (dityrosine, kynurenine and N'-formylkynurenine) contents were determined. The results showed that fAGEs content decreased with increasing concentration of curcumin and piperine (P < 0.05). Addition of curcumin and piperine at 160 µg mL−1 could inhibit fluorescent AGEs by 100% and 93% respectively. Dityrosine and N'-formylkynurenine contents decreased as curcumin and piperine concentration increased (P < 0.05). Furthermore, the result of principal component analysis indicated that curcumin and piperine markedly impeded BSA oxidation, resulting in a lower level of fAGEs in model systems. Therefore, adding curcumin and piperine may facilitate reduced fAGEs levels in BSA–fructose model.  相似文献   
7.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
8.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
9.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
10.
《Ceramics International》2022,48(6):8325-8330
In this work, we propose a facile approach to fabricate Ti4+-doped Li3V2(PO4)3/C (abbreviated as C-LVTP) nanofibers using an electrospinning route followed by a high temperature treatment. In this designed nanocomposite, the ultrafine LVTP dots are homogeneously dispersed into one-dimensional carbon nanofibers and the Ti4+ doping does not destroy the crystal structure of monoclinic Li3V2(PO4)3. Compared to the undoped Li3V2(PO4)3/C (abbreviated as C-LVP), the as-fabricated C-LVTP fibers present higher reversible capacity, superior high-rate capability as well as better cyclic property. Especially, the C-LVT7%P cathode delivers not only high capacities of 187.2 and 160.3 mAh g?1 at 0.5 and 10 C respectively, but also stable cyclic property with the reversible capacity of 135.8 mAh g?1 at 20 C following 500-cycle spans. The good battery characteristics of C-LVT7%P can be mainly ascribed to Ti4+ doping, which can increase the electrical conductivity and Li+ diffusion coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号