首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13868篇
  免费   1175篇
  国内免费   276篇
电工技术   83篇
综合类   378篇
化学工业   4124篇
金属工艺   723篇
机械仪表   313篇
建筑科学   529篇
矿业工程   48篇
能源动力   217篇
轻工业   5345篇
水利工程   27篇
石油天然气   378篇
武器工业   57篇
无线电   440篇
一般工业技术   1578篇
冶金工业   224篇
原子能技术   105篇
自动化技术   750篇
  2024年   112篇
  2023年   278篇
  2022年   419篇
  2021年   555篇
  2020年   470篇
  2019年   537篇
  2018年   511篇
  2017年   555篇
  2016年   603篇
  2015年   495篇
  2014年   690篇
  2013年   917篇
  2012年   808篇
  2011年   1088篇
  2010年   708篇
  2009年   732篇
  2008年   717篇
  2007年   678篇
  2006年   644篇
  2005年   465篇
  2004年   441篇
  2003年   464篇
  2002年   437篇
  2001年   264篇
  2000年   237篇
  1999年   196篇
  1998年   217篇
  1997年   162篇
  1996年   132篇
  1995年   126篇
  1994年   96篇
  1993年   81篇
  1992年   67篇
  1991年   74篇
  1990年   55篇
  1989年   34篇
  1988年   16篇
  1987年   34篇
  1986年   17篇
  1985年   32篇
  1984年   39篇
  1983年   19篇
  1982年   33篇
  1981年   5篇
  1980年   18篇
  1979年   8篇
  1978年   10篇
  1977年   5篇
  1975年   8篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Sweet pickled mango named Ma-Muang Bao Chae-Im is a traditional preserved mango from Hat Yai, Thailand. This study investigated (I) volatile and non-volatile compound profiles of commercial Ma-Muang Bao Chae-Im and (II) their relationship to consumer preference. Untargeted metabolomics profiling was performed by gas chromatography-mass quadrupole-time of flight analysis. There were 117 volatile and 44 non-volatile compounds annotated in six commercial brands of Ma-Muang Bao Chae-Im. Furthermore, 46 volatile and 19 non-volatile compounds’ discriminant markers were found by Partial least square discriminant analysis. Among those markers, sorbic and benzoic acid were observed in several brands; moreover, the combination of both compounds altered the volatile profile, especially the ester group. Partial least square regression revealed that overall consumer liking is correlated to 1-heptanol; 1-octanol; acetoin; acetic acid, 2-phenylethyl ester; D-manitol; terpenes and terpenoids, while firmness to sucrose and L-(-)-sorbofuranose. On the other hand, most ester compounds were not related to consumer preference.  相似文献   
2.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
3.
Ni–Co/Mg(Al)O alloy catalysts with different Co/Ni molar ratios have been prepared from Ni- and Co-substituted Mg–Al hydrotalcite-like compounds (HTlcs) as precursors and tested for dry reforming of methane. The XRD characterization shows that Ni–Co–Mg–Al HTlcs are decomposed by calcination into Mg(Ni,Co,Al)O solid solution, and by reduction finely dispersed alloy particles are formed. H2-TPR indicates a strong interaction between nickel/cobalt oxides and magnesia, and the presence of cobalt in Mg(Ni,Co,Al)O enhances the metal-support interaction. STEM-EDX analysis reveals that nickel and cobalt cations are homogeneously distributed in the HTlcs precursor and in the derived solid solution, and by reduction the resulting Ni–Co alloy particles are composition-uniform. The Ni–Co/Mg(Al)O alloy catalysts exhibit relatively high activity and stability at severe conditions, i.e., a medium temperature of 600 °C and a high space velocity of 120000 mL g?1 h?1. In comparison to monometallic Ni catalyst, Ni–Co alloying effectively inhibits methane decomposition and coke deposition, leading to a marked enhancement of catalytic stability. From CO2-TPD and TPSR, it is suggested that alloying Ni with Co favors the CO2 adsorption/activation and promotes the elimination of carbon species, thus improving the coke resistance. Furthermore, a high and stable activity with low coking is demonstrated at 750 °C. The hydrotalcite-derived Ni–Co/Mg(Al)O catalysts show better catalytic performance than many of the reported Ni–Co catalysts, which can be attributed to the formation of Ni–Co alloy with uniform composition, proper size, and strong metal-support interaction as well as the presence of basic Mg(Al)O as support.  相似文献   
4.
By choosing a triple block polymer, poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), as the backbone and adopting a long side-chain double-cation crosslinking strategy, a series of SEBS-based anion-exchange membranes (AEMs) was successively synthesized by chloromethylation, quaternization, crosslinking, solution casting, and alkalization. The 70C16-SEBS-TMHDA membrane showed high OH conductivity (72.13 mS/cm at 80 °C) and excellent alkali stability (only 10.86% degradation in OH conductivity after soaking in 4-M NaOH for 1700 h at 80 °C). Furthermore, the SR was only 9.3% at 80 °C and the peak power density of the H2/O2 single cell was up to 189 mW/cm2 at a current density of 350 mA/cm2 at 80 °C. By introducing long flexible side chains into a polymer SEBS backbone, the structure of the hydrophilic–hydrophobic microphase separation in the membrane was constructed to improve the ionic conductivity. Additionally, network crosslinked structure improved dimensional stability and mechanical properties.  相似文献   
5.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
6.
Potato processing industry has a high degree of discarding, which currently has low added value being used primarily for animal feed. However, potato wastes offer a broad range of interesting components such as antioxidants, starch, protein or fibre with potential applications in the food and non-food industries. The recovery of these high valuable fractions using efficient multistage and multiproduct processes could be of great interest. This short review provides a general overview on the integral valorisation of potato wastes, offering an updated vision of the main residual parts generated during potato harvesting and processing, the high valuable obtained components focusing on the bioactive ones and the potential of the emerging extraction techniques over conventional ones. In addition, innovative applications are discussed to highlight the scientific and applied interest of these underutilised and undervalued fractions and to emphasise the integral valorisation of raw materials.  相似文献   
7.
《Advanced Powder Technology》2020,31(10):4187-4196
Manganese oxide catalysts have been synthesized from the used batteries via hydrometallurgical method and effect of hydrometallurgical parameters such as the effect of acid type (H2SO4, HNO3, HCl), acid concentration (0.5, 1, 1.5, 2 %v/v) and powder to acid ratio (1/50, 1/60, 1/70, 1/80) were in detail investigated. The physico-chemical properties of as-prepared catalysts were characterized by FT-IR, XRD, FESEM, EDX, BET, TEM, and TPR-H2 analysis. The activity of as-prepared catalysts were investigated towards the oxidation of benzene, toluene, and xylene (BTX) in a plasma-catalytic process. The results show that benzene and toluene conversion were almost constant in the range of 97–98% in case of various acid types, acid concentrations and solid to liquid ratios. However, the xylene conversion were varied in case of different hydrometallurgical factors. The highest xylene conversion was obtained in the presence of MnS0.5–60, which was prepared using H2SO4 with concentration of 0.5%v/v and solid to liquid ratio of 1/60. The effect of the input voltage and BTX flow rate on the BTX conversion was also investigated using MnS0.5–60 catalyst in detail.  相似文献   
8.
Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28-C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.  相似文献   
9.
10.
Yogurt preserves and enhances nutritional value of milk. In this study, we have compared several strains to determine the physicochemical, sensory, rheological and aroma characteristics of different yogurts. We used Lactobacillus gasseri LGZ 1029 (LG), commercial probiotic L. rhamnosus (LGG) and traditional fermentation strains Streptococcus thermophilus and L. bulgaricus (SL). Results showed that the flavour and texture characteristics of mixed-strain yogurts were obviously better than in single-strain yogurts. Addition of LG increased pseudoplastic behaviour, as shown by Herschel–Bulkley model analysis of rheological behaviour. The LG + SL group also had both the highest viscosity consistency index and thickening ability. In addition, a total of 57 volatile compounds were detected in yogurts and the fermentation with the addition of LG was mainly affected by ketones. Our study suggested that a yogurt with new attributes can be produced by using LGZ 1029.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号