首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81578篇
  免费   7500篇
  国内免费   4349篇
电工技术   7141篇
技术理论   5篇
综合类   7285篇
化学工业   7102篇
金属工艺   3500篇
机械仪表   5717篇
建筑科学   15436篇
矿业工程   3338篇
能源动力   3131篇
轻工业   3610篇
水利工程   3717篇
石油天然气   4899篇
武器工业   1524篇
无线电   7267篇
一般工业技术   6437篇
冶金工业   2730篇
原子能技术   936篇
自动化技术   9652篇
  2024年   223篇
  2023年   941篇
  2022年   1859篇
  2021年   2302篇
  2020年   2636篇
  2019年   2061篇
  2018年   1916篇
  2017年   2582篇
  2016年   2951篇
  2015年   3163篇
  2014年   5718篇
  2013年   4794篇
  2012年   6142篇
  2011年   6447篇
  2010年   4945篇
  2009年   4775篇
  2008年   4360篇
  2007年   5527篇
  2006年   4987篇
  2005年   4294篇
  2004年   3594篇
  2003年   2988篇
  2002年   2483篇
  2001年   2098篇
  2000年   1702篇
  1999年   1401篇
  1998年   1121篇
  1997年   888篇
  1996年   880篇
  1995年   739篇
  1994年   570篇
  1993年   396篇
  1992年   351篇
  1991年   239篇
  1990年   206篇
  1989年   180篇
  1988年   131篇
  1987年   77篇
  1986年   64篇
  1985年   56篇
  1984年   54篇
  1981年   39篇
  1980年   72篇
  1979年   53篇
  1965年   28篇
  1964年   34篇
  1960年   24篇
  1959年   35篇
  1956年   30篇
  1955年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
2.
诱导式卫星欺骗干扰可诱导航空器逐渐偏离预定航迹,难以被发现,因此及时有效地检测干扰是飞行安全的保障。在现有紧组合导航体制基础上,设计了一种基于误差估值累加开环校正的紧组合导航结构,并证明了其性能与传统闭环校正紧组合导航性能等效。在此结构中,将紧组合导航系统与自适应序贯概率比检测方法结合,提出了一种基于误差估值累加开环校正的诱导式欺骗检测方法,融合紧组合导航信息与其他不受欺骗影响的导航信息,构建欺骗检测统计量进行诱导式欺骗检测。仿真结果表明,开环校正结构可避免随时间累加的惯性导航系统误差所导致的组合导航滤波器发散问题,同时欺骗检测方法可进一步提高算法对“最坏”情形下微小诱导式欺骗的检测效果。  相似文献   
3.
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently, which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure (EWP). By means of a three-dimensional (3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system (TDS) widely used in China and its optimized drainage system (ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice, including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 kPa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.  相似文献   
4.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
5.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
6.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
7.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
8.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
9.
《工程爆破》2022,(1):47-49
介绍电气化铁路既有线无隔墙台阶爆破扩堑方法。沿既有线方向设置低台阶 ,边界处布置光爆孔 ,采用“同列同段和列间微差”的起爆网路。采用自制的“炮被”和架设“钢管排架”阻挡飞石、滚石和滑石 ,确保了既有线的安全。文中还概述了“炮被”和“钢管排架”的制做以及作者的认识和体会。  相似文献   
10.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号