首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316858篇
  免费   27912篇
  国内免费   13733篇
电工技术   18740篇
技术理论   33篇
综合类   27438篇
化学工业   50241篇
金属工艺   12007篇
机械仪表   15953篇
建筑科学   34515篇
矿业工程   17502篇
能源动力   14938篇
轻工业   29646篇
水利工程   11127篇
石油天然气   41098篇
武器工业   3511篇
无线电   15466篇
一般工业技术   20397篇
冶金工业   14815篇
原子能技术   2331篇
自动化技术   28745篇
  2024年   1090篇
  2023年   3944篇
  2022年   7677篇
  2021年   10370篇
  2020年   10112篇
  2019年   8234篇
  2018年   7517篇
  2017年   9168篇
  2016年   11248篇
  2015年   11679篇
  2014年   20856篇
  2013年   19339篇
  2012年   23098篇
  2011年   25106篇
  2010年   18135篇
  2009年   18084篇
  2008年   16229篇
  2007年   20116篇
  2006年   19047篇
  2005年   16453篇
  2004年   13905篇
  2003年   12257篇
  2002年   10199篇
  2001年   8542篇
  2000年   7386篇
  1999年   5861篇
  1998年   4353篇
  1997年   3808篇
  1996年   3022篇
  1995年   2504篇
  1994年   2060篇
  1993年   1471篇
  1992年   1209篇
  1991年   891篇
  1990年   726篇
  1989年   637篇
  1988年   347篇
  1987年   274篇
  1986年   219篇
  1985年   281篇
  1984年   215篇
  1983年   174篇
  1982年   102篇
  1981年   128篇
  1980年   121篇
  1979年   48篇
  1978年   27篇
  1977年   27篇
  1959年   28篇
  1951年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
2.
学习不仅仅是自然科学知识的学习,更是社会科学、民族文化、正确人生观和价值观的形成过程,“课程思政”无疑正是实现该目标的捷径,它是当前高等院校思想政治教育的新模式。如何提升学生解决“复杂工程问题”的能力成为高校开展工程教育和“新工科”的难点和重点,而课程思政正是培养学生解决“复杂工程问题”中所需要的非技术因素的重要途径。“自动控制系统工程设计”是自动化专业高年级学生的一门专业课,当前关于“课程思政”的论述是指导思想居多、实施经验以及案例设计较少,针对该问题以“自动控制系统工程设计”为例,详细给出了“课程思政”教学案例的具体实施过程,对同类课程提供参考。  相似文献   
3.
4.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
5.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
6.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
7.
Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.  相似文献   
8.
Polymer electrets have revealed great potential application in electromechanical devices because of the low weight, large quasi-piezoelectric sensitivity, and excellent flexibility. For an electret, a permanent and macroscopic electric field exists on the surface, principally led by a macroscopic electrostatic charge on the surface or a net orientation of polar groups inside the object. Here, progress in the development of polymer electrets is reviewed. After a brief retrospect of the research courses and those typical polymer electrets that are classified into fluorine polymer and nonfluorine polymer, we present a survey on the charging methods, including corona, soft X-ray, contact, thermal and monoenergetic particle beams. The latest representative applications (i.e., power harvesting, sensors, field effect transistors, and biomedicine) based on polymer electrets are also summarized. Finally, we complete this review with a discussion on perspectives and challenges in this field.  相似文献   
9.
以“创新、协调、绿色、开放、共享”为内核的新发展理念,是对马克思主义发展理念的继承和发扬,极具时代精神,富含问题意识,为高校思想政治教育发展、教育教学改革实践提供了强大的理论支撑。本文以“通信原理”为例,阐述了新发展理念在课程改革中的思路和方法,实现了思想政治教育与专业基础课程有机融合,为深化高校教学改革、创新人才培养模式提供了思路。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号