首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32214篇
  免费   5182篇
  国内免费   3027篇
电工技术   3036篇
技术理论   1篇
综合类   3172篇
化学工业   1952篇
金属工艺   663篇
机械仪表   3606篇
建筑科学   602篇
矿业工程   434篇
能源动力   537篇
轻工业   1188篇
水利工程   208篇
石油天然气   1403篇
武器工业   438篇
无线电   9033篇
一般工业技术   4039篇
冶金工业   373篇
原子能技术   886篇
自动化技术   8852篇
  2024年   111篇
  2023年   464篇
  2022年   760篇
  2021年   986篇
  2020年   1047篇
  2019年   931篇
  2018年   992篇
  2017年   1197篇
  2016年   1404篇
  2015年   1521篇
  2014年   1994篇
  2013年   1993篇
  2012年   2419篇
  2011年   2693篇
  2010年   2103篇
  2009年   2161篇
  2008年   2320篇
  2007年   2608篇
  2006年   2070篇
  2005年   1832篇
  2004年   1601篇
  2003年   1301篇
  2002年   1013篇
  2001年   830篇
  2000年   744篇
  1999年   599篇
  1998年   525篇
  1997年   456篇
  1996年   359篇
  1995年   264篇
  1994年   227篇
  1993年   187篇
  1992年   135篇
  1991年   106篇
  1990年   106篇
  1989年   85篇
  1988年   46篇
  1987年   36篇
  1986年   30篇
  1985年   39篇
  1984年   28篇
  1983年   26篇
  1982年   12篇
  1981年   27篇
  1980年   9篇
  1979年   6篇
  1978年   6篇
  1976年   3篇
  1973年   5篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Polarization imaging can retrieve inaccurate objects’ 3D shapes with fine textures, whereas coarse but accurate depths can be provided by binocular stereo vision. To take full advantage of these two complementary techniques, we investigate a novel 3D reconstruction method based on the fusion of polarization imaging and binocular stereo vision for high quality 3D reconstruction. We first generate the polarization surface by correcting the azimuth angle errors on the basis of registered binocular depth, to solve the azimuthal ambiguity in the polarization imaging. Then we propose a joint 3D reconstruction model for depth fusion, including a data fitting term and a robust low-rank matrix factorization constraint. The former is to transfer textures from the polarization surface to the fused depth by assuming their relationship linear, whereas the latter is to utilize the low-frequency part of binocular depth to improve the accuracy of the fused depth considering the influences of missing-entries and outliers. To solve the optimization problem in the proposed model, we adopt an efficient solution based on the alternating direction method of multipliers. Extensive experiments have been conducted to demonstrate the efficiency of the proposed method in comparison with state-of-the-art methods and to exhibit its wide application prospects in 3D reconstruction.  相似文献   
2.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
3.
Machine learning-based fault detection methods are frequently combined with wavelet transform (WT) to detect an unintentional islanding condition. In contrast to this condition, these methods have long detection and computation time. Thus, selecting a useful signal processing-based approach is required for reliable islanding detection, especially in real-time applications. This paper presents a new modified signal processing-based islanding detection method (IDM) for real-time applications of hydrogen energy-based distributed generators. In the study, a new IDM using a modified pyramidal algorithm approach with an undecimated wavelet transform (UWT) is presented. The proposed method is performed with different grid conditions with the presence of electric noise in real-time. Experimental results show that oscillations in the acquired signal can be reduced by the UWT, and noise sensitivity is lower than other WT-based methods. The non-detection zone is zero and the maximum detection and computational time is also 75 ms at a close power match.  相似文献   
4.
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications.  相似文献   
5.
This review examines the application, limitations, and potential alternatives to the Hagberg–Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.  相似文献   
6.
Illumination is essential for modern life as colorful world is perceived by human visionary system. Display technology has been developing rapidly in recent decades, and the basic principle is related to the way that the image is illuminated and light is emanated. Traditional illumination is provided by different types of light sources, and the display image is visible in large viewing space until the emanating light decays to zero. This work proposes and demonstrates a novel illumination scheme for a display in which the displaying images are visible only in specific spatial regions. The directional backlight ensures the image propagating to specific direction while imaging visibility can be controlled to terminate abruptly at certain distance from the display screen while exerting no influence to nearby regions. The working principle for such an illumination scheme is the use of the modulated coherent directional backlight through an axicon lens. It is shown that the illumination scheme can robustly deliver carried image information to the designated viewing region. This new illumination scheme has many advantages over conventional illumination, including its usage for personal display, very lower energy consumption, as well as minimizing light hazard pollution.  相似文献   
7.
An ultrasonic tomographic velocimeter to provide quantitative images of axial flow fields in pipes is developed and presented in this work. To detect the flow in various directions and positions, a novel transducer configuration strategy is proposed. All-in-one transducers are mounted in two sectional planes of the pipe. In each plane, N transducers are equally spaced along the circumference. Overlapped propagation paths are introduced by the configuration strategy, and the influence of the vortex flow can be eliminated theoretically by averaging the line velocities of the overlapped paths. To achieve a fast detection speed, the projection data is collected via an electrical scan in a fan-beam mode. After rearrangement and interpolation of the projection data, the parallel beam filtered back projection (FBP) algorithm is implemented to reconstruct the axial flow field. Numerical simulations with the theoretical velocity profiles were performed. The compensation method for the vortex flow is proved to be effective and necessary, and the number of transducers required for reconstruction of common flow profiles was estimated. Accordingly, an ultrasonic tomographic velocimeter consisting of 2×12 transducers was fabricated. Experiments were conducted in the straight pipe and downstream of a single bend pipe and compared with the computational fluid dynamics (CFD) simulation results. As demonstrated, the ultrasonic tomographic velocimeter was capable of visualizing both symmetric and asymmetric axial flow fields with high reliability.  相似文献   
8.
曾靓妮  邓方阁 《红外技术》2020,42(5):501-505
乳腺疾病已严重危害女性身心健康,其中乳腺癌更位居全球范围内女性癌症发病率和死亡率首位,因此乳腺癌的早期发现意义重大。传统结构影像学早期检测疾病具有一定局限性,而红外热成像作为功能成像技术可为乳腺癌的早期筛查提供有效线索。因此本文主要就红外热成像在乳腺疾病的早期检测及预后评估的应用价值进行综述。  相似文献   
9.
In this work, the grain boundaries composition of the polycrystalline CaCu3Ti4O12 (CCTO) was investigated. A Focused Ion Beam (FIB)/lift-out technique was used to prepare site-specific thin samples of the grain boundaries interface of CCTO ceramics. Scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectrometry (EDXS) and Electron Energy Loss Spectroscopy (EELS) systems were used to characterize the composition and nanostructure of the grain and grain boundaries region. It is known that during conventional sintering, discontinuous grain growth occurs and a Cu-rich phase appears at grain boundaries. This Cu-rich phase may affect the final dielectric properties of CCTO but its structure and chemical composition remained unknown. For the first time, this high-resolution FIB-TEM-STEM study of CCTO interfacial region highlights the composition of the phases segregated at grain boundaries namely CuO, Cu2O and the metastable phase Cu3TiO4.  相似文献   
10.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号