首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44363篇
  免费   4363篇
  国内免费   2004篇
电工技术   8513篇
技术理论   1篇
综合类   4320篇
化学工业   3601篇
金属工艺   1135篇
机械仪表   2685篇
建筑科学   2011篇
矿业工程   1352篇
能源动力   1445篇
轻工业   2800篇
水利工程   617篇
石油天然气   1209篇
武器工业   429篇
无线电   9476篇
一般工业技术   3687篇
冶金工业   1012篇
原子能技术   459篇
自动化技术   5978篇
  2024年   175篇
  2023年   688篇
  2022年   938篇
  2021年   1361篇
  2020年   1332篇
  2019年   1152篇
  2018年   971篇
  2017年   1300篇
  2016年   1477篇
  2015年   1609篇
  2014年   2668篇
  2013年   2346篇
  2012年   3124篇
  2011年   3341篇
  2010年   2668篇
  2009年   2628篇
  2008年   2606篇
  2007年   3091篇
  2006年   2925篇
  2005年   2404篇
  2004年   2061篇
  2003年   1765篇
  2002年   1402篇
  2001年   1205篇
  2000年   1034篇
  1999年   837篇
  1998年   611篇
  1997年   527篇
  1996年   475篇
  1995年   399篇
  1994年   397篇
  1993年   258篇
  1992年   210篇
  1991年   169篇
  1990年   124篇
  1989年   127篇
  1988年   103篇
  1987年   48篇
  1986年   27篇
  1985年   29篇
  1984年   28篇
  1983年   12篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   6篇
  1978年   5篇
  1976年   4篇
  1975年   6篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
2.
针对传统的电弧电路故障检测结果不准确的问题,设计用于电弧检测的SoC系统,并且在55nm工艺下进行流片验证。采用包含两种结构的模数转换器的片上电压源,设计了锁相环以及复位电路,精度最高可达8.67 bit。验证结果表明,本设计可提高电弧检测的准确性。  相似文献   
3.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
4.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
5.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
6.
A Pitot tube is a popular device used for the measurements of flow fields. To control the accuracy of the Pitot tube coefficient, the international standard organization (ISO), the American Society for Testing and Materials (ASTM), and the Japanese Industrial Standards (JIS) issued guidelines that recommended the shape and working conditions of these devices. However, many Pitot tubes on the market do not follow these guidelines. In the present study, various types of Pitot tubes in the market were tested at the National Metrology Institute of Japan (NMIJ) to determine the effects of the geometry and flow characteristics. The results revealed certain limitations in the existing ISO and JIS standards, specifically with regard to the recommended design parameters of the AMCA Pitot tube, the reference coefficient value for the JIS Pitot tube, and the redefinition and limitation of Reynolds numbers pertaining to Pitot tube working conditions.  相似文献   
7.
8.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
9.
At present, the development and implementation of digital transformation are the keys to promoting high-quality industry development. The new digital fabrication method of robotic 3D printing is a research area being studied by many to tackle the issue of the declining productivity of traditional construction methods. Although many studies have been done, most of the current 3D printing projects are facing limitations in terms of scale. In order to bridge the gap, this article proposed a mass customization 3D printing framework system for large-scale projects. This article discusses how mass customization is made possible through the joint operation of the FUROBOT software and 3D printing hardware. By taking the east gate of Nanjing Happy Valley Plaza as a case study, the article demonstrates and studies the feasibility of the large-scale mass customization 3D printing framework system.  相似文献   
10.
《Ceramics International》2022,48(16):23504-23509
KTaO3 and KTa0.9M0.1O3-α (M = Ti, Hf, Zr) were prepared by solid state reaction at 1330 °C for 2 h and characterized by x-ray diffraction. The AC impedance technique was used to analyze the sintered solid electrolytes in 1%H2/Ar and dry air atmosphere. Among KTa0.9M0.1O3-α (M = Ti, Hf, Zr), KTa0.9Zr0.1O3-α displays the highest conductivity in 1%H2/Ar atmosphere. The carriers transport numbers of solid electrolytes were measured by concentration cell method. The results show KTa0.9Zr0.1O3-α is a pure proton conductor below 525 °C. Stability tests show that KTa0.9Zr0.1O3-α has good chemical stability against CO2 and H2O.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号