首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13821篇
  免费   1744篇
  国内免费   914篇
电工技术   953篇
综合类   1078篇
化学工业   523篇
金属工艺   1025篇
机械仪表   1878篇
建筑科学   1299篇
矿业工程   274篇
能源动力   144篇
轻工业   789篇
水利工程   267篇
石油天然气   439篇
武器工业   174篇
无线电   1445篇
一般工业技术   1109篇
冶金工业   399篇
原子能技术   166篇
自动化技术   4517篇
  2024年   91篇
  2023年   302篇
  2022年   559篇
  2021年   634篇
  2020年   594篇
  2019年   367篇
  2018年   350篇
  2017年   445篇
  2016年   463篇
  2015年   571篇
  2014年   951篇
  2013年   811篇
  2012年   1010篇
  2011年   1016篇
  2010年   841篇
  2009年   836篇
  2008年   791篇
  2007年   900篇
  2006年   804篇
  2005年   658篇
  2004年   587篇
  2003年   520篇
  2002年   415篇
  2001年   336篇
  2000年   309篇
  1999年   262篇
  1998年   183篇
  1997年   156篇
  1996年   129篇
  1995年   102篇
  1994年   93篇
  1993年   62篇
  1992年   66篇
  1991年   43篇
  1990年   41篇
  1989年   38篇
  1988年   30篇
  1987年   14篇
  1986年   6篇
  1985年   25篇
  1984年   16篇
  1983年   16篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1975年   3篇
  1966年   2篇
  1964年   2篇
  1963年   2篇
  1955年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Polarization imaging can retrieve inaccurate objects’ 3D shapes with fine textures, whereas coarse but accurate depths can be provided by binocular stereo vision. To take full advantage of these two complementary techniques, we investigate a novel 3D reconstruction method based on the fusion of polarization imaging and binocular stereo vision for high quality 3D reconstruction. We first generate the polarization surface by correcting the azimuth angle errors on the basis of registered binocular depth, to solve the azimuthal ambiguity in the polarization imaging. Then we propose a joint 3D reconstruction model for depth fusion, including a data fitting term and a robust low-rank matrix factorization constraint. The former is to transfer textures from the polarization surface to the fused depth by assuming their relationship linear, whereas the latter is to utilize the low-frequency part of binocular depth to improve the accuracy of the fused depth considering the influences of missing-entries and outliers. To solve the optimization problem in the proposed model, we adopt an efficient solution based on the alternating direction method of multipliers. Extensive experiments have been conducted to demonstrate the efficiency of the proposed method in comparison with state-of-the-art methods and to exhibit its wide application prospects in 3D reconstruction.  相似文献   
2.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
3.
在传统的轮胎表面缺陷依靠人工检测,存在劳动强度高、受人的主观影响大以及效率低下的问题。针对这一现象,研究了一种基于机器视觉的轮胎表面缺陷3D检测系统。该系统依靠机器视觉系统获取检测轮胎的表面图像,然后创建3D模型、判定缺陷类型,最终实现实时自动预警,为轮胎生产商提供一种自动化检测方案。系统集成了先进的技术、软件和工具,配套的信息管控系统可以对轮胎型号和生产数据进行采集、存储、分析,以便在生产过程中实现更高效、更可靠的质量控制,具有较高的实际应用推广价值。  相似文献   
4.
徐浩  吴炜  陈浩  王子康 《电子测试》2020,(10):117-118,27
无人机技术目前的快速发展使得我们国家输电线路自身的巡检能力得到了持续的提升,基于此本文在对无人机技术给予认识的情况下,在了解了输电线路巡检过程中的使用优势之后,还总结了无人机技术在当前我国线路巡检过程中的应用路径以及应用方法;之后使用案例分析的方式分析了无人机技术在当前输电线路巡检过程中的应用方法。  相似文献   
5.
The present paper proposes a new method for axis identification in discrete axially symmetrical geometric models. This method is based on-a-never-used-before property of the axially symmetrical surfaces for which the symmetry line of any section curve of the surface (or of a portion of it in the case of an incomplete axially symmetrical surface) always intersects the axis of symmetry of the surface. Thus the working principle of the method makes it very robust to local defectiveness, measurement noise and outliers.In order to compare it with the most cited methods presented in literature, several types of tests have been designed and performed. The robustness of those methods, on the one hand, has been evaluated by defining the Statistical Confidence Boundary at 1σ confidence level. The trueness of the method, on the other hand, has been evaluated on geometric models obtained by measuring real objects. The high robustness, which characterizes the proposed method, makes it particularly suitable for product geometric inspection where high accuracy is required.  相似文献   
6.
We investigate the challenges of building an end-to-end cloud pipeline for real-time intelligent visual inspection system for use in automotive manufacturing. Current methods of visual detection in automotive assembly are highly labor intensive, and thus prone to errors. An automated process is sought that can operate within the real-time constraints of the assembly line and can reduce errors. Components of the cloud pipeline include capture of a large set of high-definition images from a camera setup at the assembly location, transfer and storage of the images as needed, execution of object detection, and notification to a human operator when a fault is detected. The end-to-end execution must complete within a fixed time frame before the next car arrives in the assembly line. In this article, we report the design, development, and experimental evaluation of the tradeoffs of performance, accuracy, and scalability for a cloud system.  相似文献   
7.
Train driving is a highly visual task. The visual capabilities of the train driver affects driving safety and driving performance. Understanding the effects of train speed and background image complexity on the visual behavior of the high-speed train driver is essential for optimizing performance and safety. This study investigated the role of the apparent image velocity and complexity on the dynamic visual field of drivers. Participants in a repeated-measures experiment drove a train at nine different speeds in a state-of-the-art high-speed train simulator. Eye movement analysis indicated that the effect of image velocity on the dynamic visual field of high-speed train driver was significant while image complexity had no effect on it. The fixation range was increasingly concentrated on the middle of the track as the speed increased, meanwhile there was a logarithmic decline in fixation range for areas surrounding the track. The extent of the visual search field decreased gradually, both vertically and horizontally, as the speed of train increased, and the rate of decrease was more rapid in the vertical direction. A model is proposed that predicts the extent of this tunnel vision phenomenon as a function of the train speed.Relevance to industryThis finding can be used as a basis for the design of high-speed railway system and as a foundation for improving the operational procedures of high-speed train driver for safety.  相似文献   
8.
This work intends to develop an online experimental system for screening of deoxynivalenol (DON) contamination in whole wheat meals by visible/near-infrared (Vis/NIR) spectroscopy and computer vision coupling technology. Spectral and image information of samples with various DON levels was collected at speed of 0.15 m s−1 on a conveyor belt. The two-type data were then integrated and subjected to chemometric analysis. Discriminant analysis showed that samples could be classified by setting 1000 μg kg−1 as the cut-off value. The best correct classified rate obtained in prediction was 93.55% based on fusion of spectral and image features, with reduced prediction uncertainty as compared to single feature. However, quantification of DON by quantitative analysis was not successful due to poor model performance. These results indicate that, although not accurate enough to provide conclusive result, this coupling technology could be adopted for rapid screening of DON contamination in cereals and feeds during processing.  相似文献   
9.
Highly accurate real‐time localization is of fundamental importance for the safety and efficiency of planetary rovers exploring the surface of Mars. Mars rover operations rely on vision‐based systems to avoid hazards as well as plan safe routes. However, vision‐based systems operate on the assumption that sufficient visual texture is visible in the scene. This poses a challenge for vision‐based navigation on Mars where regions lacking visual texture are prevalent. To overcome this, we make use of the ability of the rover to actively steer the visual sensor to improve fault tolerance and maximize the perception performance. This paper answers the question of where and when to look by presenting a method for predicting the sensor trajectory that maximizes the localization performance of the rover. This is accomplished by an online assessment of possible trajectories using synthetic, future camera views created from previous observations of the scene. The proposed trajectories are quantified and chosen based on the expected localization performance. In this study, we validate the proposed method in field experiments at the Jet Propulsion Laboratory (JPL) Mars Yard. Furthermore, multiple performance metrics are identified and evaluated for reducing the overall runtime of the algorithm. We show how actively steering the perception system increases the localization accuracy compared with traditional fixed‐sensor configurations.  相似文献   
10.
The World Robot Summit is a robot Olympics and aims to be held in a different country every four years from 2020. The concept of the Plant Disaster Prevention challenge is daily inspections, checks, and emergency response in industrial plants, and in this competition, robots must carry out these types of missions in a mock-up plant. The concept of the Tunnel Disaster Response and Recovery challenge is emergency response to tunnel disasters, and is a simulation competition whereby teams compete to show their ability to deal with disasters, by collecting information and removing debris. The Standard Disaster Robotics challenge assesses, in the form of a contest, the standard performance levels of a robot that are necessary for disaster prevention and emergency response. The World Robot Summit Preliminary Competition was held at Tokyo Big Sight in October 2018, and 36 teams participated in the Disaster Robotics Category. UGVs and UAVs contended the merits of new technology for solving complex problems, using core technologies such as mobility, sensing, recognition, performing operations, human interface, autonomous intelligence etc., as well as system integration and implementation of strategies for completing missions, gaining high-level results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号