首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
介绍了高分子聚合物作为电解质在染料敏化纳米晶TiO2太阳能电池中的应用研究进展,按电解质的物理状态不同,分别对高分子聚合物凝胶准固态电解质和导电高分子聚合物固态电解质进行了综述,并对存在的问题和未来的研究方向进行了探讨。  相似文献   

2.
镁离子电池因其比容量高、资源丰富、环境友好、安全性高(无枝晶)等优势,在储能电池领域脱颖而出.然而,镁金属负极在液态电解质中易钝化,导致其电化学性能不佳.因此,开发高效适用的固态电解质对实现高性能、实用化镁离子电池至关重要.聚合物电解质具有优异的机械稳定性、电化学稳定性、热稳定性且离子电导率高、成本低.但镁离子较高的电荷密度和较强的溶剂化作用限制了其在固态电解质中的解离与扩散.从纯固态聚合物电解质、凝胶聚合物电解质、复合聚合物电解质3个方面综述了国内外聚合物基镁离子固态电解质的离子电导率对解决镁金属负极钝化效应的贡献及其应用研究进展,指出聚合物基镁离子固态电解质当前面临的挑战并对其研究方向进行了建议和展望.  相似文献   

3.
目前商业化的锂离子电池多使用有机液态电解质,存在易燃易爆、易泄露等安全风险,而采用固态电解质替代有机液态电解质可以有效提高电池安全性。锂离子电池用固态电解质又可分为无机固态电解质和有机——即聚合物固态电解质。无机固态电解质对高温或其他腐蚀性环境适应性好,适用于在极端工作环境中刚性电池等领域;聚合物固态电解质在柔韧性和可加工性上则优势明显,适用于柔性电池等领域,但这些材料均尚有问题待解决。无机-有机复合的方式,有望综合两种材料的优势,取长补短,提高固态电解质的综合性能和实用价值。  相似文献   

4.
采用固态电解质的固态锂电池有望从根本上提高电池的安全性能及能量密度,被认为是最具应用前景的下一代电池技术之一.在诸多固态电解质中,硫化物固态电解质由于超高的离子电导率被认为最具实用化前景,但固态电解质膜易碎、难以加工等问题严重阻碍了其在固态电池中的应用.近年来,大量研究成果表明在固态电解质中引入柔性聚合物或柔性支撑载体...  相似文献   

5.
聚合物固态电解质因具有较好的柔软性和可加工性,成为一种非常具有应用前景的固态电解质。但在循环过程中,具有高反应活性的锂金属会与电解质材料和锂盐发生持续反应,生成不稳定的固态电解质界面(SEI)。这不仅导致了活性材料的损失,还可能因锂枝晶的生长而产生安全隐患。为了促进固态电解质的进一步发展,亟需解决电解质与电极之间较差的界面稳定性和兼容性等问题。基于此,本文综述了常见的几种聚合物固态电池界面的优化方法,以及最新的研究进展,对聚合物固态电解质在全固态电池中的应用进行了展望,提出了今后研究中应重点关注的技术和方向。  相似文献   

6.
在新一代储能领域中,相比于传统的有机液态电池,全固态电池具有安全性高、能量密度高和循环寿命长等优势,对其电解质的研究更是关注的重点.有机-无机复合固态电解质结合了无机固态电解质高强度、高稳定性、高离子电导率与聚合物固态电解质的质软、易加工的优势,是目前最有潜力的电解质体系.对锂离子固态电解质的基础进行了简介,并着重对有...  相似文献   

7.
固态聚合物电解质具有高安全性、高成膜性和黏弹性等优点,并与电极具有良好的接触性和相容性,是实现高安全性和高能量密度固态Li+电池的重要电解质体系。然而聚合物电解质室温离子电导率较低(10-8~10-6 S·cm-1),不能满足固态聚合物电池在常温运行的需求。因此,在提高离子电导率、机械强度和电化学稳定性等本征属性的基础上,同时探究改善电解质/电极的界面处及电极内部的离子输运是研发固态聚合物Li+电池面临的关键问题。主要从改性聚合物电解质用以提高Li+电池电化学性能的角度出发,综述了凝胶聚合物电解质、全固态聚合物电解质和复合固态电解质中的离子输运机制及其关键参数,总结了近年来聚合物电解质的最新研究进展和未来的发展方向。  相似文献   

8.
共价有机框架材料(COFs)因其结构单元多样性、拓扑结构、有序孔道结构等特点在气体吸附、催化、光电等领域得到广泛的应用。近些年来,基于COFs材料的有序孔道和易于功能化修饰的特性,COFs材料在固态电解质领域展现出巨大的潜力。本文主要总结了近十年来COFs型固态电解质的研究进展,包括聚合物链段-COFs型、离子基团-COFs型固态电解质的应用和锂离子传导性能。对COFs型固态电解质设计思路及未来发展方向进行总结与展望,以期为固态电解质材料的发展提供新思路。  相似文献   

9.
有机-无机复合固态电解质不仅具有聚合物电解质的柔韧性和界面相容性,还能显著提高离子传导性和力学性能。然而,构建良好的填料/聚合物分散体系是制备此类复合电解质的难点,设计新型有强相互作用的功能化填料以调控界面渗流结构也面临巨大挑战。通过功能硅烷对无机填料进行化学键联改性或原位合成是解决无机填料与聚合物间分散性和界面相容性问题的有效策略。本文综述了在复合固态电解质中利用功能硅烷对无机填料进行表面改性和原位合成、功能硅烷作为复合固态电解质的交联中心和制备离子胶类复合固态电解质四方面的研究进展,重点阐述了硅烷功能化填料与固态电解质结构和性能之间的关系。最后对功能硅烷在有机-无机复合固态电解质中的应用研究进行了总结和展望。  相似文献   

10.
综述了一种新型功能高分子材料——凝胶电解质近几年来的研究进展.说明了凝胶电解质的类型:固态聚合物电解质、凝胶聚合物电解质、复合凝胶聚合物电解质.重点阐述了提高凝胶电解质导电性能的方法.主要包括:采用电导率高和化学稳定性高的锂盐,采用交联、共聚和共混等方法对分子结构进行改性,降低结晶性能,添加增塑剂,添加无机填料等.并预...  相似文献   

11.
固体聚合物电解质具有质轻、安全、易加工等优点,在锂离子电池中具有巨大的应用价值。主要综述了以PVDF-HFP共聚物为基的聚合物电解质的研究工作,介绍了PVDF-HFP固体电解质的制备方法,主要讨论了PVDF-HFP电解质的改性措施,对今后的发展方向作了简单展望。  相似文献   

12.
李英  张香平 《化工进展》2018,37(9):3446-3453
高温质子交换膜燃料电池在降低燃料电池水热管理复杂性、催化剂中毒方面有明显优势;可改善电池阴阳两极尤其是阴极氧气还原反应的动力学特性,提高电池的效率。聚合物电解质膜作为关键材料之一,在高温时易失水导致质子传导率降低、机械强度和热稳定性不高等问题。本文基于磺酸、磷酸和离子液体等不同质子传递介质,对高温聚合物电解质膜进行综述,比较了各类聚合物电解质膜的优缺点及应用时存在的问题,着重探讨嵌段共聚物在高温聚合物电解质膜方面的潜在应用,指出离子液体的添加不但可作为质子载体,而且在构建嵌段聚合物结构方面可发挥"诱导剂"作用。提出通过分子设计可更好了解嵌段聚合物的空间构效关系,进而通过结构设计提高膜的质子传导性能和稳定性。  相似文献   

13.
讨论了锂离子电池充放电过程中有机电解液的电化学行为,研究发现,有机电解液会在电极活性材料表面发生电化学反应而形成聚合物钝化层(SEI膜),其厚度和疏密性与电解液的组成及充放电制度有关;其组成和电化学性能还将直接影响锂离子电池的充放电容量和循环寿命。通过改变电解液的导电锂盐成分、有机溶剂组成和加入极性添加剂等方法可优化电解液的电化学特性,从而可有效控制该钝化层的成膜过程、膜组成与膜结构,提高锂离子电池的充放电及循环性能。  相似文献   

14.
锂离子电池聚合物电解质的研究进展   总被引:1,自引:0,他引:1  
唐致远  高飞  薛建军  杨廷明 《化工进展》2004,23(12):1308-1311
对固体聚合物电解质和凝胶聚合物电解质的发展、组成、性能及其在聚合物锂离子电池中的应用等方面进行了总结和评述,比较了其优缺点和应用范围,对聚合物电解质及聚合物锂离子蓄电池的发展前景进行了预测。  相似文献   

15.
增塑型锂离子电池聚合物电解质   总被引:6,自引:0,他引:6  
从组成聚合物电解质的聚合物基材和电解液两方面进行分析,介绍了最近几年凝胶型、微孔型和复合型聚合物电解质的研究现状,比较了它们的制备方法、性能和特点,探讨了锂盐、增塑剂、离子液体和单离子导体等对聚合物电解质性能的影响,并简要评述了聚合物锂离子电池未来发展的前景趋势。  相似文献   

16.
综述了近十几年来高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展及其在高温质子交换膜燃料电池中的应用进展,指出了此类电解质目前存在的亟待解决的两个问题:咪唑类离子液体毒化Pt基催化剂和复合膜中离子液体的长期稳定性。最后对高温质子交换膜燃料电池用离子液体聚合物电解质的发展前景作了展望,即开发与Pt基催化剂相容的离子液体聚合物电解质以及预防复合膜内离子液体的流失,即提高高温质子交换膜燃料电池的性能及长期稳定性,最终提高高温燃料电池的寿命。  相似文献   

17.
凝胶聚合物电解质的电化学性能   总被引:5,自引:0,他引:5       下载免费PDF全文
张森  史鹏飞 《化工学报》2005,56(2):329-332
用化学交联法制备了凝胶聚合物电解质.聚烯烃多孔膜支撑的凝胶聚合物电解质具有优良的电化学性能, 室温电导率为1.01×10-3S•cm-1,锂离子迁移数为0.41,在Al电极上的氧化起始电位达到4.2 V以上.采用聚烯烃多孔膜支撑的凝胶聚合物电解质制备了聚合物锂离子电池,并研究了工艺条件对聚合物锂离子电池电化学性能的影响.研究的工艺条件包括:单体添加量和电极组合方式.优化后的聚合物锂离子电池具有良好的电化学性能,1 C放电容量为0.2 C放电容量的93.2%,经100次1 C循环后的剩余容量仍在80%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号