首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
目的 研究从柚皮中提取低甲氧基果胶的最佳工艺条件.方法 采用酸解法浸提并用碱法脱酯提取低甲氧基果胶,通过单因素试验和正交试验优化工艺条件.结果 各因素对提取低甲氧基果胶的影响顺序为:提取液pH>提取时间>提取温度>液料比.最佳提取条件为液料比(mL/g)21:1,提取液pH 2.0,提取温度80℃,提取时间70 min.结论 在此工艺条件下果胶得率5.51%,所得果胶的甲氧基含量6.33%,符合国家规定标准.  相似文献   

2.
目的 研究从柚皮中提取低甲氧基果胶的最佳工艺条件.方法 采用酸解法浸提并用碱法脱酯提取低甲氧基果胶,通过单因素试验和正交试验优化工艺条件.结果 各因素对提取低甲氧基果胶的影响顺序为:提取液pH>提取时间>提取温度>液料比.最佳提取条件为液料比(mL/g)21:1,提取液pH 2.0,提取温度80℃,提取时间70 min.结论 在此工艺条件下果胶得率5.51%,所得果胶的甲氧基含量6.33%,符合国家规定标准.  相似文献   

3.
苹果渣果胶提取工艺优化及碱法降酯效果评价   总被引:1,自引:0,他引:1  
以苹果渣为原料,分别采用正交试验和响应面分析的方法,优化提取低酯果胶的工艺条件。结果表明,提
取果胶的最佳条件为提取温度95 ℃、提取时间120 min、料液比1∶20(g/mL)、提取水解体系pH 1.5,该条件下高
酯果胶得率为6.07%,且4 个因素对高酯果胶得率的影响强弱为料液比>提取体系pH值>提取温度>提取时间。碱
法脱酯降甲酯度的最佳条件为处理温度15 ℃、处理时间25.33 min、体系pH 9.87,在此条件下,低酯果胶的得率为
5.14%,3 个因素对低酯果胶得率的影响强弱为处理体系pH值>处理时间>处理温度。碱法降甲酯度效果的最佳条
件为处理温度15 ℃、处理时间30.64 min、处理体系pH 10.14。在此条件下,果胶酯化度为38.26%,3 个因素对果胶
酯化度的影响强弱为处理体系pH值>处理温度>处理时间。  相似文献   

4.
以南瓜果肉为材料,采用咔唑比色的方法,通过正交试验,分别研究超声波法、纤维素酶法和离子交换树脂法提取南瓜果胶的最佳提取条件。结果表明:超声波法的最佳提取工艺条件为:超声波功率400W,时间35min,液料比10:1(ml/g),果胶得率5.98%;纤维素酶法提取果胶的最佳工艺条件为:酶解时间2.0h,pH4.5,酶解温度55℃,加酶量0.5%,果胶得率9.56%;离子交换树脂法提取果胶的最佳工艺条件为:树脂用量15%,料液比为1:20(g/ml),pH2.5,时间2.0h,温度80℃,果胶得率7.62%。三种提取方法进行比较,纤维素酶法果胶得率最高,为南瓜果胶的最佳提取工艺。  相似文献   

5.
陈伟  李加兴 《食品与机械》2017,33(4):150-153
以黄秋葵为原料,研究其果胶的超声辅助法提取条件及其溶胶特性。采用单因素试验探讨了料液比、pH值、提取温度、超声时间对提取果胶的影响,利用4因素3水平正交试验进行工艺条件优化,并采用理化检测方法分析果胶纯度、干燥失重、灰分含量、pH值、持水性和酯化度等特性。研究结果表明,在250 W超声功率下,黄秋葵果胶提取的最佳工艺条件为料液比115(g/mL)、pH值4.0、超声温度60℃、时间40min,果胶的得率为20.45%;黄秋葵果胶的持水性为10.22mL/g,酯化度为72.43%,且干燥失重、灰分、pH值均符合QB 2484—2000《食品添加剂果胶》标准要求。研究表明,黄秋葵果胶采用超声波辅助法提取得率较高,是一种持水性较好的高酯化果胶。  相似文献   

6.
琯溪蜜柚果皮中果胶提取工艺优化研究   总被引:4,自引:0,他引:4  
陈发河  吴光斌  陈旭 《食品科学》2006,27(11):387-391
本文以琯溪蜜柚皮为原料,通过对料水比、浸提温度、浸提时间、浸提液pH值进行单因素试验,采用正交试验法对琯溪蜜柚皮果胶提取工艺条件进行优化,并对提取的果胶制品的性质进行检测,包括果胶质含量、含水量、pH值、总灰分量、甲氧基含量等。实验结果表明,浸提液pH对果胶提取得率的影响程度达到极显著水平,浸提温度、浸提时间对果胶提取得率没有显著影响。琯溪蜜柚皮中果胶提取的最佳工艺条件为:浸提液pH1.5、提取温度90℃、提取时间90min,果胶得率19.10%。经理化检验,果胶制品的水分含量为11.38%,pH值2.95,总灰分5.92%,甲氧基含量为13.76%。本实验方法获得的果胶提取得率高,品质符合国家标准。  相似文献   

7.
酶法制备低甲氧基果胶的工艺研究   总被引:1,自引:1,他引:1  
以新鲜橙皮为原料,在盐酸水解乙醇沉淀提取果胶之前,激活并利用果皮中固有的果胶酯酶进行果胶的酶法脱酯,制备低甲氧基果胶,以产品的甲氧基含量和果胶得率为指标,确定最佳工艺条件。结果表明,新鲜橙皮内源酶法制备低甲氧基果胶的最佳工艺条件为:加入果皮浆液量0.15%的内源性果胶酯酶激活剂碳酸钠,控制温度45℃,pH8.0进行脱酯,时间60min;果胶提取温度90℃,时间60min,pH2.0。在此条件下制备的果胶甲氧基含量为5.93%,符合低甲氧基果胶标准,果胶得率为2.46%。  相似文献   

8.
姚定  董明 《食品科学》2009,30(20):165-168
通过单因素和正交试验研究水提温度、pH值、提取时间、料液比4个理化因素对菠萝蜜果皮中果胶得率的影响,确定菠萝蜜皮果胶提取的最佳工艺参数。结果表明,酸提取最佳工艺为提取温度95℃、pH1.0、提取时间2.5h、液料比30:1(水:物料,m/m),果胶得率为12.46%;超声波辅助提取最佳工艺为80℃、50min、液料比40:1、pH1.0、450W,果胶得率为13.17%。超声波辅助提取可提高果皮中果胶得率和缩短时间。  相似文献   

9.
采用单因素、正交分析法分析果胶提取工艺,再根据Box-Behnken试验设计原理,选取液料比、提取温度、提取时间、提取液pH值4个因素对酸提醇沉淀工艺进行正交设计和响应面优化,最后对果胶理化性质进行分析。结果表明:正交设计和响应面法两种方法在分析各因素火龙果皮中果胶提取率的影响上所得结果基本一致,即提取时间液料比提取温度pH值,正交试验确定的最佳工艺为:液料比40∶1(mL/g)、pH4.0、提取时间100 min、温度50℃。响应面试验确定的最佳工艺为:液料比39∶1(mL/g),溶液pH4.0,提取时间105 min,提取温度51℃。通过二者确定的最佳条件进行验证试验,结果表明按照响应面法分析的最佳工艺条件所得的提取率高于正交试验7.1%。因此,火龙果皮中果胶提取的最佳工艺以响应面法为准,该条件下火龙果皮中果胶得率为35.41%。提取的果胶各项理化指标符合国标要求,为生产加工火龙果皮果胶提供低廉、高效、简单的提取方法。  相似文献   

10.
以纯果胶得率为评价指标,在超声(功率为250 W)预处理30 min后,分别考察提取溶剂、初始pH值、料液比、提取温度及时间等因素对纯果胶得率的影响。在此基础上,采用正交试验优化黄皮果胶的制备工艺,并分析以黄皮果胶理化性质。结果表明,制备黄皮果胶的最佳工艺条件为以盐酸(0.01 mol/L)为提取溶剂,提取温度90 ℃、液料比为20∶1(mL∶g)、初始pH值为2.0,提取时间120 min。该优化提取工艺条件下,黄皮果胶得率为6.84%,半乳糖醛酸含量为76.51%,且各项理化指标均达到国家标准GB 25533—2010《食品添加剂果胶》要求。  相似文献   

11.
豆腐柴叶蛋白提取工艺研究   总被引:4,自引:1,他引:3  
研究提取温度、提取时间、pH和料液比对豆腐柴叶蛋白提取率的影响,确定最佳提取工艺为:温度为50℃,时间为80min,pH为11,料液比为1∶30,豆腐柴叶蛋白提取率可达到82.04%;豆腐柴叶蛋白等电点为pH4.2.  相似文献   

12.
豆腐柴是一种药食兼用野生植物,其根、茎、叶中含有丰富的果胶、蛋白质及多种生物活性成分,具有重要的利用开发价值。该文综述近年来豆腐柴中主要功能性成分:豆腐柴果胶、豆腐柴蛋白、豆腐柴黄酮及多酚类化合物等的提取及豆腐柴系列产品开发的研究进展,并对我国豆腐柴的开发利用前景进行展望。  相似文献   

13.
以豆腐柴叶为主要原料,白砂糖、蜂蜜、柠檬酸为辅料,加工制成具有保健功能的饮料。实验对豆腐柴保健饮料的生产工艺、配方和技术进行了研究,并测定了饮料中蛋白质和黄酮的含量。实验结果表明,豆腐柴叶的最佳浸提条件为:浸提温度60℃,浸提时间30min,料液比1:25。豆腐柴保健饮料的最佳配方为:豆腐柴浸提液40%,白砂糖6%,柠檬酸0.15%,蜂蜜2%。饮料中蛋白质的含量为6.41mg/100mL,黄酮的含量为37.45mg/100mL。  相似文献   

14.
以豆腐柴为原料,采用超声-酶法提取低酯果胶,并探究其理化性质、结构特征、抗氧化活性以及流变特性。结果表明,超声-酶法提取的果胶得率达35.53%,相比传统酸法提取提高17.28%,属于低酯果胶(酯化度为16.80%),颜色呈现淡黄色,其总糖醛酸含量达到81.17%(质量分数)。通过高效液相色谱法对果胶分子质量进行测定,其重均分子质量(M w)为27.24 kDa,数均分子质量(M n)为15.30 kDa,M w/M n为1.78,表明豆腐柴果胶分子质量较低,且较为均一。单糖组成分析发现,半乳糖醛酸、葡萄糖、鼠李糖、半乳糖等是主要组分,其结构线性度较低,主要结构为短侧链的RG-Ⅰ型。红外光谱扫描特征峰证实其含有果胶成分;扫描电镜显示其表面粗糙,含有较多孔隙结构;X射线衍射表明豆腐柴果胶具有一定的结晶度;差示量热扫描、热重分析显示豆腐柴果胶在259.3℃发生降解,热稳定性较好;流变学分析结果表明不同浓度豆腐柴果胶溶液均出现剪切变稀现象,为非牛顿流体,10 g/L的果胶溶液储能模量(G′)高于损耗模量(G″),表现出较好的弹性;抗氧化活性测定显示豆腐柴果胶清除DPPH自由基、ABTS阳离子自由基的IC 50分别为0.37、0.34 g/L。研究结果为豆腐柴低酯果胶的开发及综合利用提供理论依据。  相似文献   

15.
为探究不同月份豆腐柴叶果胶特性差异,寻求不同月份"树叶凉粉"品质参差不齐的原因,提高豆腐柴叶果胶的应用价值,本文主要采用主成分分析法综合评价了不同月份(5~10月)豆腐柴叶果胶得率、主要成分、粘均分子量、乳化性、凝胶性等理化性质。结果表明:果胶得率为4.24%~18.24%,5~9月得率高于15%;半乳糖醛酸含量为73.73%~81.96%,6~9月含量较高;5~9月粘均分子量随月份增加呈增大趋势,10月有所降低。5~8月得到的果胶粉末呈淡黄色,9月和10月呈淡黄夹灰白色。乳化活性和乳化稳定性均高于50%,优于橘皮果胶标品;凝胶特性差异明显,7~9月果胶凝胶性能良好。综合评分从高到低为:9月 > 7月 > 8月 > 10月 > 6月 > 5月,说明不同月份豆腐柴叶果胶品质差异较大,7~9月豆腐柴叶果胶综合得分明显高于其他月份,更适合于果胶的提取利用。  相似文献   

16.
对豆腐柴叶胶质形成因素进行了研究,结果表明:豆腐柴叶制备滤汁的鲜叶比水(w/v)为1:8~1:10;添加0.04%~0.08%Mg2+或Ca2+能形成强度适中的凝胶,K+、Na+、Cl-、CO32-无促胶凝作用;调整滤汁pH在4~5之间;温度因素对胶质胶凝性基本无作用。  相似文献   

17.
响应面法优化菊芋渣中果胶的提取工艺及产品性质分析   总被引:2,自引:0,他引:2  
应用响应面分析法对菊芋渣中果胶的提取工艺进行优化。首先研究了不同的提取剂种类(盐酸、硫酸、亚硫酸、磷酸)对果胶得率的影响,结果表明磷酸提取效果最佳。在单因素试验的基础上,以磷酸为提取剂,采用Box-Behnken试验设计方案,以提取温度、pH值、提取时间、液料比为影响因素,以果胶得率为响应值,通过响应面分析法得到菊芋渣果胶的最佳提取条件为提取温度100 ℃、pH 1.52、提取时间63.62 min、液料比44.4∶1(mL/g),此条件下果胶的最高得率为18.76%。在最优条件下进行验证实验,实际提取结果为(18.52±0.9)%,这与模型预测值吻合,说明建立的模型可行。测定最优条件下获得果胶样品的红外光谱结构并进行了解析,分析果胶产品的性质发现,各项指标均符合GB 25533-2010《食品添加剂:果胶》的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号