首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡学一  方云  赵权 《精细化工》2012,29(10):952-954,964
以Al-Mg基复合氧化物为催化剂,尝试采用环氧乙烷(EO)分子插入γ-丁内酯(GBL)的新反应合成内酯冠醚,用FTIR和ESI-MS对目标产物结构进行了确证。实验结果表明,LE-4催化剂的催化效果最佳;对反应温度和压力的优化实验进一步表明,当使用质量分数1%的LE-4催化剂,EO与GBL的摩尔比为5时,优化反应温度和体系压力分别为160℃和0.65 MPa,GBL转化率达到75.2%。  相似文献   

2.
以γ-丁内酯,乙酸乙酯为原料,金属钠和乙醇钠为催化剂,甲苯为溶剂合成α-乙酰基-γ-丁内酯。在金属钠与乙醇钠的钠摩尔比为7:3,甲苯/γ-丁内酯(w/w)=2.51,反应温度85~90℃,反应时间5h,n(乙酸乙酯):n(GBL):金属钠为2.27:0.9:1的条件下;GBL转化率≥98%,ABL收率≥95%。  相似文献   

3.
N-甲基吡咯烷酮生产工艺影响因素分析   总被引:1,自引:0,他引:1  
以γ-丁内酯(GBL)、甲胺为原料制备N-甲基吡咯烷酮(NMP),考察了影响反应的工艺条件,实践表明,n(CH3NH3):n(GBL)为1.6~1.8,n(H2O):n(GBL)为3.6~4.0,反应温度为275~285℃,反应时间为为2.0 h,反应压力为6.0 MPa,GBL转化率≥99%,NMP选择性≥96%.  相似文献   

4.
用气相色谱法分析γ-丁内酯(GBL)及其与醋酸乙酯缩合制得的产物α-乙酰-γ-丁内酯(ABL)。采用10%聚己二酸乙二醇酯为固定相,202酸洗担体、N_2为载气,氢离子火焰检测器,水杨酸乙酯为内标物。GBL和ABL的平均回收率分别为101.39%和100.91%。对GBL合成ABL过程中的定量和控制取得了令人满意的结果。  相似文献   

5.
顺酐加氢合成γ-丁内酯的Cu-ZnO/C催化剂研究   总被引:1,自引:0,他引:1  
采用XRD、TPR、BET等方法对几种Cu/Zn催化剂进行表征,考察了催化剂活性与寿命。发现Cu/Zn催化剂添加活性炭可使顺酐常压气相加氢合成γ-丁内酯(GBL)的反应温度降低至240℃。在优化条件下:液体空速为0.1h-1,氢酐摩尔比为50∶1,顺酐转化率100%,GBL选择性为93.28%,催化剂寿命达2000h以上。  相似文献   

6.
采用固定床技术,以SO42-/MxOy型固体超强酸为催化剂,1,4-丁内酯和苯胺反应合成了N-苯基吡咯烷酮(NPP),研究固定床工艺条件对NPP转化率的影响.实验结果表明,以SO42-/MxOy型固体超强酸为催化剂固定床合成NPP的最佳实验条件为n(1,4-丁内酯)∶n(苯胺)=1.2∶1、反应温度为300℃、进料速度为1.2 mL/min,NPP的转化率最高为98.7%.  相似文献   

7.
探讨了在醇钠的催化作用下,以γ-丁内酯(GBL)和醋酸乙酯缩合制取α-乙酰-γ-丁内酯(ABL)的可行性。在带搅拌的间隙式反应釜中,用正交试验设计和单因素试验研究了反应温度、进料摩尔比和反应时间以及醇钠用量对ABL收率的影响,获得了主要工艺参数。结果表明:在相同条件下,影响收率的主要因素是反应温度和反应时间。  相似文献   

8.
以丙烯酸甲酯和环己醇为原料,经过酯交换反应合成γ,γ-环戊基丁内酯,γ,γ-环戊基丁内酯加氢得到3-环己基丙酸。考察了2步反应的催化剂和反应条件对产物收率的影响。研究结果表明,酯交换反应的优化条件为:过氧化二叔丁基为引发剂,n(丙烯酸甲酯)∶n(环己醇)=1∶4,反应温度160℃,反应时间6 h;在该条件下,γ,γ-环戊基丁内酯的收率可达93.3%;以0.5%铅/氧化铝为催化剂,γ,γ-环戊基丁内酯加氢反应的优化条件为:反应温度为250℃,γ,γ-环戊基丁内酯空速0.2 h-1,反应压力3.0 MPa,氢气空速500 h-1,在该条件下,γ,γ-环戊基丁内酯转化率78.0%,环己基丙酸选择性80.2%。  相似文献   

9.
γ-丁内酯(GBL),别名γ-羟基丁内酯,分子式C4H6O2,是重要的有机化工原料和化学中间体。GBL为一种含氧五元杂环化合物,沸点204℃,具有较高的溶解性,可以发生一系列开环或不开环的化学反应。GBL及其衍生物广泛应用于石油化工、纺织工业、香料工业、农药、医药工业等精细化工领域。  相似文献   

10.
α-乙酰基-γ-丁内酯与氯气在无溶剂条件下发生氯化反应,得到α-氯-α-乙酰基-γ-丁内酯和副产氯化氢,α-氯-α-乙酰基-γ-丁内酯在少量水和氯化氢的存在下进行开环、氯代和脱羧反应得到3,5-二氯-2-戊酮.对氯气投料比、反应温度、氯化氢用量等因素进行优化.优化工艺条件为,第一步反应:氯化温度为0~5℃、n(氯气)∶n(α--乙酰基-γ-丁内酯)=1.07∶1.00;第二步反应:水解、脱羧及氯化温度为90℃、n(氯化氢)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.7∶1.0,n(水)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.8∶1.0,通入氯化氢4h,此条件下,收率达95.2%.  相似文献   

11.
α-乙酰基-γ-丁内酯与氯气在无溶剂条件下发生氯化反应,得到α-氯-α-乙酰基-γ-丁内酯和副产氯化氢,α-氯-α-乙酰基-γ-丁内酯在少量水和氯化氢的存在下进行开环、氯代和脱羧反应得到3,5-二氯-2-戊酮.对氯气投料比、反应温度、氯化氢用量等因素进行优化.优化工艺条件为,第一步反应:氯化温度为0~5℃、n(氯气)∶n(α--乙酰基-γ-丁内酯)=1.07∶1.00;第二步反应:水解、脱羧及氯化温度为90℃、n(氯化氢)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.7∶1.0,n(水)∶n(α-氯-α-乙酰基-γ-丁内酯)=0.8∶1.0,通入氯化氢4h,此条件下,收率达95.2%.  相似文献   

12.
通过共沉淀法制备了一系列金属氧化物及复合金属氧化物催化剂,并研究了其对双氧水体系中环己酮Baeyer-Villiger氧化合成ε-己内酯的催化性能。结果表明,在乙腈作为溶剂的体系中,MgO催化剂对环己酮Baeyer-Vil-liger氧化合成ε-己内酯具有最高的催化活性;在n(H2O2)∶n(MgO)∶n(环己酮)为9.6∶0.57∶1、70℃下反应6h,环己酮转化率达82.5%、ε-己内酯选择性达98.7%。  相似文献   

13.
丁二酸二甲酯催化加氢制备γ-丁内酯的工艺研究   总被引:1,自引:0,他引:1  
在微型固定床反应器中,丁二酸二甲酯在复合铜基催化剂Cu-ZnO-ZrO2/A12O3作用下,催化加氢制备了γ-丁内酯。实验中考察了催化剂组成、反应温度、压力、氢酯摩尔比、溶剂比和液时空速等因素对加氢反应的影响。结果显示,在反应温度为220℃、压力为3.0 MPa、n(H2)∶n(丁二酸二甲酯)=150∶1、V(CH3OH)∶V(丁二酸二甲酯)=4∶1、床层液时空速为0.25 h-1的条件下,丁二酸二甲酯的转化率达到100%,γ-丁内酯的选择性达到90%。  相似文献   

14.
以乙胺、γ-丁内酯为原料合成N-乙基吡咯烷酮,在n(乙胺):n(γ-丁内酯)=1.35、反应温度245~255℃、反应时间2.5~3.0 h、压力4.5~5.5MPa、催化剂加入量占总体原料量0.25%的条件下γ-丁内酯转化率≥98%,N-乙基吡咯烷酮选择性≥95%。  相似文献   

15.
ZSM-5分子筛催化γ-丁内酯气相胺解反应   总被引:1,自引:0,他引:1  
采用金属盐溶液浸渍的方法对NaZSM-5分子筛进行改性,考察了ZSM-5分子筛对γ-丁内酯与乙醇胺之间气相反应合成N-羟乙基吡咯烷酮(NHP)的催化性能。研究表明ZSM-5分子筛是目标反应潜在的活性催化剂,其中CuZSM-5具有较高的催化活性,NHP收率达到30%以上。考察了原料组成、接触时间、反应温度、催化剂焙烧温度及颗粒大小等对反应的影响,确定了合适的反应条件为:n(乙醇胺)∶n(γ-丁内酯)=3~4,[p(乙醇胺)+p(γ-丁内酯)]∶p(N2)=1,接触时间25~32g.h/mol,反应温度250~270℃,催化剂粒径100~120目。  相似文献   

16.
以γ-丁内酯为原料,分别与碳酸二甲酯、碳酸二乙酯,在氢化钠的催化下,利用α氢的活泼性制得α-甲氧甲酰基-γ-丁内酯和α-乙氧甲酰基-γ-丁内酯。探索了反应温度、反应时间、反应物配比、催化剂用量对产率的影响。结果表明,适宜的反应条件为:①合成α-甲氧甲酰基-γ-丁内酯反应温度25℃,催化剂0.3 mol,反应时间3 h,反应物料物质的量比1∶1.5,产率可达85%;②合成α-乙氧甲酰基-γ-丁内酯反应温度30℃,催化剂0.3 mol,反应时间4 h,反应物物质的量比1∶2,产率可达76%。对产品进行了核磁共振氢谱、红外光谱表征。  相似文献   

17.
采用XRD、TPR、BET等方法对几种Cu/Zn催化剂进行表征,考察了催化剂活性与寿命。发现Cu/Zn催化剂添加活性炭可以使顺酐常压气相加氢合成γ-丁内酯(GBL)的反应温度降低至240℃。在优化条件下:液体空速为0.1h-1,氢酐摩尔比为50:1,顺酐转化率100%,GBL选择性为93.28%,催化剂寿命达到2000h以上。  相似文献   

18.
以磷酸作催化剂,γ-丁内酯和苄胺反应合成了1-苄基-2-吡咯烷酮,研究了反应条件对反应的影响,确定的最佳工艺条件为:n(γ-丁内酯)∶n(苄胺)∶n(磷酸)=1.0∶1.5∶0.1,反应时间2h,反应温度为180~210℃;产物经减压蒸馏分离提纯,蒸馏后的残余物作催化剂循环使用,1-苄基-2-吡咯烷酮收率为91.6%,含量99.3%;产品用元素分析、红外光谱、核磁共振等进行了确证。  相似文献   

19.
采用共沉淀法制备了Ru/Zr O2-Co O(OH)催化剂,并用于催化顺酐加氢制备γ-丁内酯反应。考察了催化剂制备中沉淀的温度、陈化的时间、不同的沉淀剂、以及沉淀剂浓度等条件对顺酐转化率和γ-丁内酯选择性的影响。结果表明,以25%的Na OH为沉淀剂,在20℃沉淀且陈化12 h得到的催化剂表现最佳的催化性能;在180℃,氢气压力3.0 MPa的条件下,反应6 h,顺酐的转化率达到100%,γ-丁内酯的选择性为92.0%。  相似文献   

20.
我国γ-丁内酯(GBL)开发工作起步较晚,20世纪80年代末有了较大的发展。到2005年,γ-丁内酯生产企业已经超过20家,总生产能力约为5万吨/年,产量在3万吨左右,70%-80%为企业自用。山西三维集团股份有限公司引进国外先进技术于2004年初建成国内最大的1.5万吨/年γ-丁内酯生产装置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号