首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
高氨氮废水的亚硝化调控因素研究   总被引:1,自引:0,他引:1  
为进一步缩短亚硝化的启动时间,提高亚硝化速率,采用SBR反应器进行了快速实现高氨氮废水的亚硝化调控因素研究。结果表明:综合优化各影响因素如温度、pH值、DO、FA是缩短亚硝化启动时间的关键,pH值和DO的调控是准确把握反应进程,获得较高出水NO-2-N浓度的关键因素,适宜的温度与pH值可弥补低DO对亚硝化速率的负面影响,并且促进氨氧化菌(AOB)快速适应低DO浓度;在温度为30℃、pH值为8.0±0.2、DO为0.5~1.0 mg/L、进水氨氮负荷(ALR)为143 mg/(L·d)的条件下,启动亚硝化只需8 d;进水ALR达1 716 mg/(L·d),氨氮转化率高达94%以上,亚硝化率也基本稳定在90%以上,出水NO-2-N高达920~1 080 mg/L,亚硝化速率达1.1~1.2 kg/(m3·d),具有较高的氨氮负荷和亚硝化活性。  相似文献   

2.
采用亲水性玻璃态单体,应用辐射技术制备生物相容性高分子共聚物载体,使用固定化细胞增殖技术对氨氧化菌进行固定化,并以流化床为生物反应器,采用SBR运行方式对人工配水进行短程硝化的启动研究。结果表明:当进水氨氮浓度为100、75、50和25mg/L时,对氨氮的的去除率分别为98.6%、99.1%、98.8%和99.8%,亚硝化率分别为98.6%、94.5%、95.2%和94.7%;对氨氮的去除速率由开始时的10.6mg/(L·d)提高到25.7mg/(L·d),耗氧速率(OUR)则由0.37mg/(L·h)提高到1.12mg/(L·h)。可见,该方法具有启动速度快、亚硝化程度高、容易控制等优点。  相似文献   

3.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

4.
研究了反硝化生物滤池的挂膜启动过程,寻求判断启动完成的快速、简便、合理的方法,为反硝化生物滤池的挂膜提供理论依据。控制水力负荷在0.022 m3/(m2·h)即HRT为14 h,水温为25~27℃,反硝化生物滤池运行14 d后对硝态氮的去除率达到99%,第15天平均进水硝态氮浓度由21.86 mg/L减小到8.05 mg/L,出水浓度基本保持不变,仍稳定在0~1 mg/L,反硝化系统生态结构稳定,表明挂膜成功。当有机碳源充足、NO-3-N浓度0.1 mg/L时,反硝化速率与NO-3-N浓度遵循零级反应动力学规律。反硝化生物滤池中的氨氮主要由微生物同化作用去除,去除率约为28.9%。  相似文献   

5.
为了实现快速有效的短程硝化控制和高硝化速率,采用A2O工艺的活性污泥,利用CSTR反应器,分别控制游离氨和溶解氧浓度,对硝化活性污泥快速实现短程硝化及稳定高效运行进行研究。在低游离氨浓度控制体系中,对硝态氮的产生不具有很好的控制作用,短程硝化难以启动;在高游离氨浓度控制体系中,实现了5 d快速启动短程硝化,亚硝态氮积累率稳定在90%以上;提高短程硝化过程的溶解氧浓度,硝化性能从26 mg/(L·h)增长到54 mg/(L·h),亚硝态氮积累率仍稳定维持在90%以上,达到高效稳定运行的目的;另外,从AOB生长动力学分析可知,提高游离氨浓度对提高AOB生长速率具有非常重要的意义。因此,通过控制高游离氨浓度、提高溶解氧可以快速实现短程硝化并稳定高效运行。  相似文献   

6.
采用多段AO+MBR工艺处理实际煤化工废水。将两段AO设计成OAAO形式,一段O池对BOD_5去除率为80%,有效解决了MBR回流污泥中大量溶解氧对A池的冲击与A段反硝化对碳源的需求问题。在某煤化工项目中,当进水COD为400~600 mg/L,在一级O池污泥负荷设计为0.08 kgBOD_5/(kgMLSS·d)、一级A池设计反硝化速率为0.044 kgNO_3~--N/(kgMLSS·d)、二级O池污泥负荷设计为0.08 kgBOD_5/(kgMLSS·d)、二级A池设计反硝化速率为0.029 kgNO_3~--N/(kgMLSS·d)、MBR的通量设计为12 L/(m~2·h)时,COD去除率95%,氨氮去除率99%,出水SS1.5 mg/L。  相似文献   

7.
悬浮载体生物膜反应器的亚硝酸型硝化研究   总被引:2,自引:0,他引:2  
采用多孔聚合物载体生物膜反应器对亚硝酸型硝化进行了研究,考察了连续流情况下pH、DO和水力停留时间(HRT)对氨氮降解和亚硝化反应的影响.在进水氨氮浓度为420mg/L、温度为25℃的情况下,当HRT为24h、DO为2mg/L、pH值为8时,对氨氮的去除率>75%,亚硝酸盐氮的积累率达到了70%以上,实现了对氨氮的高效去除和稳定的亚硝酸盐氮积累.间歇试验结果表明,亚硝酸盐氮的生成速率为5.868 4 mg/(L·h),而硝酸盐氮的生成速率仅为0.9931mg/(L·h),即生物膜上氨氧化菌的数量和活性明显高于亚硝酸盐氧化菌的.  相似文献   

8.
在高温(29~31℃)环境下,采用控制反应器中溶解氧浓度及结合投加抑制剂NaCl的方式,经过32d的批式操作,在中试规模氧化沟反应器中成功启动短程硝化。33d之后,氨氮降解率超过50%,亚硝化率稳定维持在90%以上。随着季节性降温,在常低温情况下(18~27℃)进行二次启动,第27天亚硝化率大于50%,自第35天开始,通过在氧化沟内形成溶解氧梯度并延长反应时间的方式,在第42天之后亚硝化率稳定在90%以上。对污泥微生物进行高通量测序分析后发现,亚硝化单胞菌(Nitrosomonas)占9.39%,证明在中试氧化沟内成功实现了亚硝化菌的富集。之后转为连续流运行,在进水NH_4~+-N约为70mg/L、HRT为11.2~12.7h的条件下,氧化沟的亚硝化效果最好。对比两次启动过程,常低温下短程硝化启动成功的耗时较高温的长,高温状态下污泥比氨氧化速率为0.037kgN/(kgMLSS·d),而常低温下为0.030kgN/(kgMLSS·d)。  相似文献   

9.
采用强化除磷膜生物反应器处理合成生活污水,在进水有机负荷和总氮负荷分别为0.08 kgCOD/(kgMLSS·d)和0.015 kgN/(kgMLSS·d)的条件下,能够稳定取得92.6%、77%的去除率,出水平均浓度分别为20.8、12.41 mg/L.在HRT为15.5 h、硝化液回流比为400%的条件下运行时,PAOs的释磷速率由第21天的4.2 mgPO3-4-P/( gMLSS·h)增长到第60天的9.49 mg-PO3-4-P/(gMLSS·h),DPAOs与PAOs的吸磷速率分别由1.95、6.29 mgPO3-4-P/( gMLSS·h)提高到5.47、11.13 mgPO3-4-P/(gMLSS·h),DPAOs占PAOs的比例由31%增长到49%,缺氧吸磷量提高了约6.6 mg/L,缺氧段的除磷率也由46.8%提高到了85.3%.在工艺运行稳定阶段,虽然PAOs和DPAOs的吸磷速率均有所增加,但是增幅均小于DPAOs富集阶段的,并且DPAOs/PAOs值稳定于50%左右,膜组件对胶体磷的截留保证了出水TP平均浓度在0.26 mg/L左右.  相似文献   

10.
硝化-膜生物反应器去除双酚A的机理分析   总被引:1,自引:0,他引:1  
采用硝化-膜生物反应器处理含双酚A(BPA)废水,考察了在自养硝化污泥驯化期间反应器中NH+4-N、NO-2-N、NO-3-N浓度的变化以及对低浓度BPA的去除效果,讨论了吸附和生物降解对去除BPA的贡献。在污泥负荷为0.032~0.055 gBPA/(kgSS·d)、进水氨氮浓度为100~350 mg/L时,硝化污泥对BPA的去除率可达70%以上,对氨氮的去除率90%。硝化污泥吸附去除的BPA量占总去除量的25%以下,并随着进水BPA浓度的增加而减小。经过驯化后,反应器可以在去除较高浓度氨氮的同时降解一定浓度的BPA。当污泥负荷0.055 gBPA/(kgSS·d)时,低浓度BPA的加入对硝化-膜生物反应器去除常规污染物能力的影响较小。  相似文献   

11.
将4株耐盐净污菌引入到循环式活性污泥法(CAST)反应器中,构成新型的生物强化CAST含盐废水处理系统。试验表明,在8 h的周期运行工艺中,当耐盐净污菌形成稳定的优势菌群后,可显著提高CAST对COD的去除率,去除率达到90%以上,提高了20%左右;生物强化CAST也具有一定的脱氮除磷能力,其对氨氮的去除率为95%左右、对总氮的去除率为65%左右、对总磷的去除率在30%~75%之间。生物强化CAST主反应池的MLSS值在2 500~4 500 mg/L之间变化。  相似文献   

12.
研究了连续流三维电极/生物膜反应器在不同氮磷比(N/P)下的反硝化性能。结果表明:N/P值对去除NO3--N的影响不大,但对出水NO2--N浓度有明显影响。在N/P值由5∶1增大至100∶1的过程中,对NO3--N的去除率介于59.2%~71.6%之间。当N/P值为10∶1时,对NO3--N的去除率最高达到了71.6%,出水NO3--N为8.53 mg/L。当N/P值为10∶1时,出水NO2--N浓度最低为0.27 mg/L;当N/P值为100∶1时NO2--N的积累最为严重,NO2--N生成量最高达到了1.76 mg/L。N/P值还对NH4+-N的产生有明显影响,N/P值从5∶1增至100∶1的过程中,NH4+-N生成量由4.50 mg/L逐渐减小至0.26 mg/L。当N/P值为(5∶1)~(50∶1)时,反应器具有较好的除磷功能;但当N/P值为100∶1时,出水TP浓度高于进水TP浓度。  相似文献   

13.
小氮肥企业高氨氮废水处理的试验研究   总被引:1,自引:0,他引:1  
针对小氮肥厂生产废水的排放现状及其对城市污水处理厂的影响 ,在试验的基础上提出了处理高含氨氮废水的空气吹脱—好氧硝化处理工艺 .空气吹脱可有效地去除解吸液中的氨氮 ,氨氮浓度由 1869.3mg/L降至 40 8.3mg/L ,去除率为 78% ;好氧生物硝化可有效地去除混合生产废水中的氨氮 ,氨氮浓度由 2 41mg/L降低为 2 3 .2mg/L ,去除率达 90 % ,达到国家二级排放标准  相似文献   

14.
基质比例对高负荷ANAMMOX-UASB装置运行的影响   总被引:1,自引:0,他引:1  
在进水总无机氮负荷率约为13 kg/(m3.d)的条件下,通过改变无机配水中亚硝态氮与氨氮浓度的比例来考察其对厌氧氨氧化性能的影响。试验共分为5个阶段,各阶段的进水NO 2--N/NH 4+-N均值分别为0.87、1.03、1.16、1.27、1.48。在前4个阶段对NO 2--N的平均去除率变化不大,均在95%以上,在阶段五则降至82.28%;对NH4+-N的去除率从阶段一的74.94%逐步上升至阶段五的97.85%;在阶段四时厌氧氨氧化效果最好,对NH4+-N与NO2--N的平均去除率分别达到97.59%、95.25%。试验过程中跑泥和温度降低等现象均会使处理效果降低。对反应器各部位取样的分析表明,在5个不同阶段,至反应器中部对基质的去除率就已达90%以上。  相似文献   

15.
固定化膜生物反应器处理焦化废水的运行特性   总被引:3,自引:0,他引:3  
针对采用传统生物法处理焦化废水时系统停留时间长、除污效率低的现状,将固定化技术引入膜生物反应器(MBR),并开展了处理COD为2598 mg/L、氨氮为378 mg/L的高浓度焦化废水研究.结果表明:其对COD的去除率为98.7%,对氨氮的去除率为95.03%,出水水质达到了国家一级排放标准;冲击负荷对反应器的处理效果影响较小,厌氧段的反应时间宜为14h,好氧段的较佳反应时间为10 h; pH值为7.5~8.5时对氨氮能保持较高的降解率;好氧段应保持较高的溶解氧浓度,反应8 h后宜减少曝气量以降低能耗;在反应器长期运行的过程中膜通量的衰减速度较慢,运行30d后膜通量下降了37.2%,且用水冲洗就可使膜通量得到基本恢复.  相似文献   

16.
以珠江广州段源水为处理对象,考察了曝气生物滤池(BAF)/臭氧(O3)预处理工艺后砂滤池的除污效果。结果表明,砂滤池出水CODMn、NH4^+ -N和浊度的平均值分别为2.19、0.099mg/L和0.225NTU,NO2^- -N的最高值为0.003mg/L;相对于沉淀池出水,砂滤池对上述指标的平均去除率分别为27.60%、66.88%、69.88%和98.53%。BAF和臭氧塔提高了源水的DO浓度,其对浊度和有机物的去除作用降低了砂滤池的反冲洗频率,从而有利于提高生物膜中微生物的数量和活性;臭氧氧化可提高源水的可生化性,且水中没有残留臭氧,也为砂滤池的生物降解作用提供了有利条件。  相似文献   

17.
新型A/O/A直流脱氮工艺处理焦化废水的研究   总被引:1,自引:0,他引:1  
采用新型A/O/A直流脱氮工艺处理焦化废水,考察了对COD和NH4^+ -N的去除效果。四个月的连续流试验表明,在进水COD平均为2470mg/L、NH4^+ -N为102mg/L的条件下,系统出水COD和NH4^+ -N平均浓度分别为120、10mg/L,达到了《污水综合排放标准》的二级标准。由于无回流,因而与工程上常用的A^2O^2工艺相比,动力消耗节省了约50%,而占地面积却仅为其1/3。前置厌氧池减轻了好氧段的负荷,改善了对COD的去除效果;出水分流则为缺氧池内的反硝化提供了较充足的碳源,避免了投加甲醇的额外花费。  相似文献   

18.
The effect of benzene, toluene, and m-xylene (BTX) compounds on the nitrifying activity of a sludge produced in steady-state nitrification was evaluated in batch cultures. Benzene and m-xylene at 10 mg C/L decreased ammonium consumption efficiency by 57% and 26%, respectively, whereas toluene did not affect the ammonium oxidation process. The consumed NH4+-N was totally oxidized to NO3- -N. There was no significant effect at 5 mg C/L of each aromatic compound. BTX (5-20mg C/L) induced a significant decrease in the values for specific rates of NH4+ -N consumption (76-99%) and NO3- -N production (45-98%). At 10 mg C/L of BTX compounds, the inhibition order on nitrate production was: benzene > m-xylene > toluene while at 20 mg C/L, the sequence changed to m-xylene > toluene > benzene for both nitrification inhibition and BTX compounds persistence. At 5 mg C/L of BTX compounds, there was no toxic effect on the sludge whereas from 10 to 50 mgC/L, bacteria did not totally recover their nitrifying activity. At a concentration of 5 mg C/L, toluene was first oxidized to benzyl alcohol, which was later oxidized to butyrate while m-xylene was oxidized to acetate and butyrate.  相似文献   

19.
奶牛场废水中的有机物和抗生素对其还田利用不利,为此,采用带缺氧区的推流式SBR(简称改良型SBR)工艺处理干清粪条件下间歇产生的奶牛场废水,重点考察其对抗生素的去除效果。结果表明,当进水COD、NH4+-N、TN、TP浓度分别为1 234~4 696、768~1 365、880~1 370、5.62~12.02 mg/L时,经改良型SBR工艺处理后,出水COD可降至401~544 mg/L、NH4+-N始终低于10mg/L,TN平均损失率为22.38%,TP基本没有被去除。奶牛场废水中磺胺类和β-内酰胺类抗生素总浓度为3.84~4.48μg/L,改良型SBR工艺对其总去除率可达到72.97%~90.82%,且对10种较高浓度的磺胺类抗生素(每种添加浓度均为50μg/L,共计500μg/L)也有很好的去除效果,去除率可达95.75%~95.97%。生物降解是奶牛场废水中磺胺类和β-内酰胺类抗生素的主要去除途径,另外,磺胺类抗生素的去除与其分子结构中S—N键的断裂有重要关系。在不影响COD去除效果的条件下,调整反应器的混合液回流量或进水量均可减少碱度投加量,从而降低运行成本。  相似文献   

20.
Im JH  Woo HJ  Choi MW  Han KB  Kim CW 《Water research》2001,35(10):2403-2410
An anaerobic-aerobic system including simultaneous methanogenesis and denitrification was introduced to treat organic and nitrogen compounds in immature leachate from a landfill site. Denitrification and methanogenesis were successfully carried out in the anaerobic reactor while the organic removal and nitrification of NH4+,-N were carried out in the aerobic reactor when rich organic substrate was supplied with appropriate hydraulic retention time. The maximum organic removal rate was 15.2 kg COD/m3 d in the anaerobic reactor while the maximum NH4+-N removal rate and maximum nitrification rate were 0.84kg NH4+-N/m3/d and 0.50kg NO3--N/m3/d, respectively, in the aerobic reactor. The pH range for proper nitrification was 6-8.8 in the aerobic reactor. The organic compounds inhibited nitrification so that the organic removal in the anaerobic reactor could enhance the nitrification rate in the following aerobic reactor. The gas production rate was 0.33 m3/kg COD and the biogas compositions of CH4, CO2, and N2 were kept relatively constant, 66-75, 22-32, and 2-3%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号