首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
《食品与发酵工业》2014,(8):163-170
为了确定传统豆酱香气品质最佳的发酵时期,以东北自然发酵豆酱为研究对象,采用顶空固相微萃取(HP-SPME)结合气质联用(GC-MS)技术,以对甲氧基苯甲醛为内标,对不同发酵时期的豆酱样品中的香气成分进行定性和半定量分析,并运用因子分析构建传统豆酱香气品质评价模型,以综合得分作为评价指标,结果表明:在16个不同发酵时期的豆酱样品中共检测出56种香气成分,其中酯类9种,醇类6种,醛类5种,酮类4种,酸类9种,酚类9种,杂环类7种,烃类5种,以及其他类2种。豆酱样品中香气成分含量变化明显,发酵45 d豆酱样品中香气成分含量最多,为8 176.422 ng/g,随着发酵过程的进行香气成分含量整体上呈下降趋势,发酵70 d和发酵75 d香气成分含量分别为4 052.849和2 265.616 ng/g。因子分析得到3个公因子分别命名为调和型香气因子、贡献型香气因子和增香型香气因子,比较不同发酵时期豆酱样品的香气品质综合得分可知,发酵45 d豆酱样品综合得分最高,其次是发酵65 d和发酵55 d的样品,发酵70 d和发酵75 d的豆酱样品综合得分较低,因此豆酱的最佳发酵时间为4565 d。  相似文献   

2.
采用人工接种方式,研究鲁氏酵母(Zygosaccharomyces rouxii)对豆酱品质和挥发性香气的影响,以期提高豆酱质量。在工厂化生成条件下,在酱醅发酵第7天时接入Z.rouxii,继续发酵至14,21,28天后,分别测定豆酱总酸、总酯、氨基酸态氮和感官指标,并采用气质联用方法测定豆酱挥发性香气成分。结果表明:添加Z.rouxii可以显著提升豆酱的理化和感官指标。当接种量为2.0×106个/g、发酵至28天时,酱醅中总酸含量为2.96g/100g,总酯含量为6.66g/100g,氨基酸态氮含量为2.38g/100g,接种鲁氏酵母可显著增加豆酱的感官指标。添加Z.rouxii后,豆酱中的挥发性香气物质种类增加12种,且含量显著增加,酯类和酚类化合物贡献较大。研究结果为鲁氏酵母在豆酱生产中的应用、品质和风味的改善提供了数据支持。  相似文献   

3.
豆酱因酱香味浓郁、营养丰富,广受消费者青睐。 采用原池浇淋工艺制备黑豆酱,并与市售黄豆酱进行对比分析。 结果表明, 黑豆酱滋味鲜美,氨基酸态氮含量(0.85 g/100 g)高于黄豆酱。两种豆酱中均检出17种游离氨基酸(含7种必需氨基酸)。黑豆酱中游离 氨基酸总含量为3.50 g/100 g,比黄豆酱高11%。 黑豆酱中共鉴定出91种挥发性风味化合物,总含量为46 698.92 μg/kg;酯类、醇类和醛 酮类对其香气成分形成贡献较大,且酯类含量最高,占挥发性成分总含量的47%。 黄豆酱中共鉴定出80种挥发性风味化合物,总含量 为25 103.05 μg/kg。 该工艺生产的黑豆酱产品品质良好,具有开发应用前景。  相似文献   

4.
采用枯草芽孢杆菌(Bacillus subtilis)DX-9和异常威克汉姆酵母菌(Wickerhamomyces anomalus)DZ-3分别发酵制备威宁豆酱,以氨基酸态氮含量和感官评分为评价指标,优化制曲条件、辅料添加量及后发酵条件,并采用气相色谱-质谱联用(GC-MS)技术检测豆酱中的挥发性风味物质。结果表明,菌株DX-9和DZ-3的最佳制曲条件:接种量2%和3%、温度38 ℃和34 ℃、时间12 d和18 d;辅料最适添加量:食盐10%、辣椒5%、五香粉1.5%;菌株DX-9和DZ-3的最佳后发酵条件:温度40 ℃和36 ℃、时间均为90 d。纯种发酵豆酱的品质优于自然发酵豆酱,且菌株DX-9比DZ-3发酵的豆酱品质更佳。自然发酵、菌株DX-9和DZ-3发酵豆酱中挥发性风味物质分别检出73、50和64种,共有物质为23种,主要风味物质分别为醇类(27.36%)、酸类(75.68%)和烯烃类(64.21%)。通过主成分分析(PCA)得出威宁豆酱主要挥发性风味物质为烃类和酸类。  相似文献   

5.
利用对甲氧基苯甲醛作为内标物,采用顶空固相微萃取法和气相色谱-质谱技术,对宝泉大豆酱发酵过程中的挥发性成分进行分析和鉴定,并根据因子分析对大豆酱的挥发性香气成分进行综合评价。结果显示:宝泉大豆酱中共鉴定出45种挥发性成分,其中酯类17种、醇类7种、酸酚类7种、酮醛类4种和其他类10种,发酵初期和发酵后期挥发性成分总量差别很大,发酵到34 d时最大为941.91 ng/g,是发酵初期的6倍,其中酯和醇含量最大值分别为62.76 ng/g和801.20 ng/g。根据因子分析显示:醇类、酯类及其他类化合物对宝泉大豆酱香气贡献较大,酸酚类和醛酮类贡献较小;其发酵到34 d时,香气品质最佳,与实际生产感官评价相一致,这些结果为更好地工业化生产大豆酱并促进其香气的形成提供参考信息。  相似文献   

6.
该研究在传统发酵酱的基础上,添加香菇柄粉制备香菇柄发酵酱,并对其进行水分、还原糖、氨基酸态氮、红色指数及氨基酸等指标测定,采用气相色谱-离子迁移谱联用(GC-IMS)技术分析其挥发性风味成分。结果表明,香菇柄发酵酱中还原糖含量(21.12%)及红色指数(1.44)均明显高于传统发酵酱,其水分含量(62.79%)及氨基酸态氮含量(0.76%)稍低于传统发酵酱。两种发酵酱中均测出17种氨基酸(包含7种必需氨基酸),传统发酵酱、香菇柄发酵酱氨基酸总量分别为99.09 mg/g、87.71 mg/g,且两种发酵酱中呈味氨基酸比例相似。两种发酵酱均共检测出32种挥发性成分,包括醇类8种、醛类9种、酯类3种、酮类4种、酸类3种、吡嗪类2种、呋喃类2种、醚类1种。研究表明,香菇柄发酵酱品质符合国标GB 2718—2014《酿造酱》的要求。  相似文献   

7.
目的比较分析宝泉大豆酱和农家酱香气成分的差异。方法利用顶空固相微萃取法和气相色谱-质谱联用技术,对成品宝泉大豆酱及农家酱的挥发性成分进行分析,并利用内标法计算各组份含量。结果在宝泉大豆酱中和农家酱中均检出42种挥发性成分,总含量分别为939.19、251.41 ng/g,其中20种挥发性成分为其共有的。挥发性成分以酯类和醇类含量最高,宝泉大豆酱中主要的酯和醇为亚油酸乙酯(387.05 ng/g)、棕榈酸乙酯(207.46 ng/g)和苯乙醇(25.05 ng/g);农家酱中主要为亚油酸乙酯(87.80 ng/g)、油酸乙酯(41.21 ng/g)和2,3-丁二醇(14.19 ng/g),这些醇酯类化合物种类和含量的不同,造成了这2种大豆酱的香气存在较大的差异。结论综合气质和感官评价结果表明,宝泉大豆酱的香气品质较优于农家酱,更符合东北人对大豆酱的要求。  相似文献   

8.
为考察不同盐度(1%,3%,5%,10%)对紫甘蓝酸菜发酵过程中挥发性风味物质及理化指标的影响,利用顶空固相微萃取-气相色谱-质谱联用(HS-SPME/GC-MS)方法分析挥发性风味物质的差异性,比较在发酵过程中,其感官得分、pH、总酸、亚硝酸盐、氨基酸态氮、还原糖含量及乳酸菌数的差异。结果表明:盐度对紫甘蓝酸菜的感官得分及理化指标中的pH、总酸、氨基酸态氮、还原糖含量及乳酸菌数有显著影响(P<0.05)。盐度过高(>5%)不利于紫甘蓝酸菜的发酵及感官品质,其中3%盐度发酵酸菜的感官综合得分最高。HS-SPME/GC-MS分析结果表明,发酵末期(60 d),3%盐度发酵的酸菜的风味物质总含量最高;其中,部分烯烃类、醇类、醛类、酮类、异硫氰酸酯类及腈类等风味物质的含量显著高于其它盐度的酸菜(P<0.05),随着盐度的增加,这些风味物质相应减少。结合OAV值分析得到酸菜中21种关键挥发性风味物质,其在较高的盐度(>5%)下对应的OAV值显著降低(P<0.05);通过PCA可知,发酵中期(30 d)和末期(60 d),不同盐度发酵的酸菜间风味物质组成差异较大,其中3%盐度的风味物质组成更为丰富;Pearson相关性分析表明,盐度与总酸、氨基酸态氮含量、乳酸菌数、感官综合得分及大部分挥发性风味物质之间呈负相关,其中与总酸呈显著负相关(P<0.05),而与pH值、还原糖含量呈正相关。结论:相比其它盐度的酸菜,3%盐度发酵的紫甘蓝酸菜风味品质较好,可直接用于紫甘蓝的发酵工艺,对紫甘蓝酸菜的生产具有一定的指导意义。  相似文献   

9.
为提高根霉发酵淡豆豉(Semen Sojae Preparatum,SSP)品质及风味,本研究采用中国根霉12和乳酸芽孢杆菌DU-106复合发酵淡豆豉,对比了纯根霉发酵与混菌发酵淡豆豉发酵过程中基本理化指标及生物活性物质、游离氨基酸、挥发性成分的变化。结果表明两种发酵方式对基本成分的影响变化不大,而混菌发酵淡豆豉溶栓酶活性(3927.84 IU/g)高于根霉发酵淡豆豉(2152.20 IU/g),大豆异黄酮含量(3.91 mg/g)高于根霉发酵淡豆豉(3.20 mg/g)。混菌发酵后淡豆豉苦味氨基酸及鲜味氨基酸轻微降低,两种发酵模式风味物质种类相近但数量发生变化,根霉发酵吡嗪类风味物质最多,混菌发酵烷烃类风味物质最多,电子鼻结果表明混菌发酵和根霉发酵风味差别显著。因此,混菌发酵在提高根霉发酵淡豆豉溶栓酶活性、游离氨基酸含量及改善风味等方面具有积极作用。  相似文献   

10.
为了解γ-氨基丁酸豆酱与市售豆酱风味品质的差异,采用顶空固相微萃取和气相质谱-色谱联用技术(HS-SPME-GC-MS)对9个市售豆酱样品(S1-S9)和γ-氨基丁酸豆酱样品(S10)中的挥发性物质进行鉴定及对各样品的常规指标进行测定,并结合主成分分析(PCA)和气味活度值(OAV)确定豆酱中的关键挥发性成分。结果表明,S10中的γ-氨基丁酸含量达1.87 mg/g,pH为4.69,色泽亮丽无杂质,10种豆酱样品中检测到8大类化合物,共144种,其中酯类、醇类和酸类物质相对含量占总挥发性成分的60%以上。41种共有挥发性成分的PCA结果中,对豆酱风味形成有较大贡献的为2-甲基丁醛、3-甲基丁醛、二甲基三硫及愈创木酚等。γ-氨基丁酸豆酱风味种类丰富,其中2-戊基呋喃、2-乙基-6-甲基吡嗪、愈创木酚及二甲基三硫含量显著高于其他样品,呈绿豆香、坚果香和丁香芳香味,这可能是γ-氨基丁酸豆酱与其他样品在风味物质上存在一定差异的原因。该研究结果可为功能性豆酱的开发及豆酱制品的风味改善提供理论参考。  相似文献   

11.
该实验通过在黄豆酱发酵过程中添加酸性蛋白酶,考察不同酸性蛋白酶添加量对黄豆酱理化指标和挥发性风味成分的影响。结果表明,添加酸性蛋白酶可促进黄豆酱发酵过程中蛋白质水解,提高黄豆酱氨基酸态氮的含量,其中0.05%添加量的提升效果最好,并有显著性差异(P<0.05);而且添加酸性蛋白酶显著提高了酱醅中挥发性酯类、醇类和酸类成分含量(P<0.05)。但挥发性风味成分的含量并未随着酸性蛋白酶添加量的增加而增多。此外,添加酸性蛋白酶的黄豆酱感官评分也显著高于对照(P<0.05)。因此,酸性蛋白酶可促进黄豆酱发酵并提高其品质。  相似文献   

12.
富含纤溶酶低盐豆酱加工工艺及品质分析   总被引:1,自引:0,他引:1  
对富含纤溶酶低盐豆酱的制曲和发酵工艺参数进行了研究,并对产品的感官指标、理化指标进行了分析。以蛋白酶和纤溶酶的活力为指标,确定了富含纤溶酶活性豆豉的制曲工艺条件为接种量1.5%,制曲温度36℃,制曲时间为36h。以氨基酸态氮含量为指标,确定了豆酱发酵工艺条件为加水量90%,食盐质量分数10%,发酵温度50℃,发酵时间7d。在确定的制曲和发酵工艺条件下制备的富含溶栓酶低盐豆酱的质量指标符合GB/T 24399—2009的要求,食盐含量4.72g/100g,为传统豆酱的50%,纤溶酶活性的达到1 070U/g,为富含溶栓酶低盐豆酱产品的开发奠定了基础。  相似文献   

13.
雷丹  吴敏  唐洁  包琴  郭睿  张庆 《食品工业科技》2020,41(7):301-308
为探究不同原料预处理工艺对复合菌株制发酵制备的豆瓣酱品质的差异,对四种不同原料预处理(生料、烫漂、常压蒸煮、高压蒸煮)工艺所制豆瓣酱的常规理化指标变化进行分析,并采用顶空固相微萃取(headspace solid-phase microextraction,HS-SPME)结合气相色谱-质谱联用(gas chromatography-mass spectrometry,GC-MS)技术,分析鉴定不同预处理方式制备豆瓣酱中的挥发性物质。结果表明:不同原料预处理工艺制备的豆瓣酱在总酸、氨基酸态氮、氯化钠和还原糖上存在明显差异,其中经烫漂预处理豆瓣酱总酸含量为0.72 g/100 g,氯化钠含量为13.2 g/100 g,相比其他三种预处理工艺较高;氨基态氮含量以常压蒸煮含量最高,为0.82 g/100 g,比烫漂处理豆瓣酱高0.11 g/100 g;还原糖含量以生料处理豆瓣酱中含量最高,为5.72 g/100 g,烫漂处理豆瓣酱次之为3.38 g/100 g;HS-SPME-GC-MS共鉴定出62种挥发性成分,生料、烫漂、常压蒸煮、高压蒸煮预处理样品分别为22、23、19、27种,其中相同成分5种(1-辛烯-3-醇、芳樟醇、苯乙醛、2,5-二甲基吡嗪、2-乙基己醇),特征风味物质分别有3、4、2和3种,烫漂预处理相比其他三种预处理方式呈味物质以及特征风味物质种类较丰富。综合常规理化指标与挥发性成分分析发现,烫漂预处理发酵豆瓣酱的品质优于其他三种原料预处理方式。  相似文献   

14.
该研究以葡萄和糯米为原料制备葡萄糯米香醋,以酒精度和感官评分为评价指标,采用正交试验设计优化其酒精发酵工艺条件;以总酸含量和感官评分为评价指标,优化其醋酸发酵工艺条件,并对该产品的挥发性成分、理化指标及感官品质进行分析。结果表明,最佳酒精发酵工艺条件为:葡萄与糯米质量比2∶1、初始糖度23%、葡萄酒高活性干酵母添加量0.22%、发酵温度28 ℃;最佳醋酸发酵工艺条件为:初始酒精度7%vol、醋酸菌(Acetobacter aceti)接种量5%、发酵温度30 ℃。在此优化条件下,葡萄糯米香醋共检出31种挥发性成分,其中醇类7种、醛类3种、酸类7种、酯类13种、苯类1种,总酸、总酯含量分别为4.70 g/100 mL、3.18 g/100 mL,葡萄糯米香醋呈红褐色、澄清透亮,口感醇厚、酸甜柔和,具有浓郁的果香和醋香。  相似文献   

15.
分别建立2 种“先低盐后高盐、先低温后高温”的分段发酵模式,其中模式1发酵条件为前期食盐质量分数为6%,12 ℃发酵12 d;中期食盐质量分数为6%,37 ℃发酵4 d;后期食盐质量分数为15%,37 ℃发酵14 d。模式2发酵前期和中期食盐质量分数为9%,其余条件与模式1相同。以传统高温发酵为对照,监测发酵过程中霉菌总数、细菌总数及理化指标的变化规律,并对发酵结束的甜瓣子样品进行生物胺和挥发性成分分析。结果表明,分段发酵(模式1、模式2)中霉菌和细菌总数都呈先保持相对稳定后快速下降的变化趋势,而对照组中霉菌总数随着发酵的进行其数量不断下降,细菌总数则先下降后缓慢增加至稳定。发酵结束时,模式1、模式2和对照组甜瓣子中总酸质量分数分别为0.96%、0.92%、0.87%,氨基酸态氮质量分数分别为0.76%、0.83%、0.66%,生物胺含量分别为122.93、126.50、176.12 mg/kg。此外,模式1和模式2发酵甜瓣子中挥发性成分种类和含量均高于对照组,其中模式1中挥发性成分含量最高,特别是酯类化合物。感官评价显示,模式1发酵甜瓣子的感官品质最佳,模式2次之,对照组最差。综合分析可知,分段发酵(模式1、模式2)甜瓣子品质优于传统高温发酵甜瓣子,尤其是模式1。  相似文献   

16.
以苦荞麦和黄豆为原料,制作一款低盐荞麦豆酱。在单因素试验的基础上,以荞麦豆酱的模糊感官评分为响应值,采用Box- Behnken中心组合设计试验对低盐荞麦豆酱的发酵工艺进行优化,并对其产品质量进行分析。结果表明,低盐荞麦豆酱的最优发酵工艺为:发酵时间59 d、荞麦粉添加量30%、发酵温度38 ℃、食盐添加量8%。在此优化条件下,低盐荞麦豆酱的感官评分为(88.49±0.25)分,氨基酸态氮、水分含量分别为(0.78±0.02) g/100 g、(43.22±1.92) g/100 g,其理化和微生物指标均符合相关国标要求。该结果可为低盐荞麦豆酱的开发和生产提供了一定的参考。  相似文献   

17.
为研究添加酱渣对黄豆酱品质的影响,在发酵过程中添加不同比例酱渣,比较黄豆酱中氨基酸态氮、色差、质构、综合感官 评价和风味物质等品质指标变化。 结果表明,随着酱渣添加量在1%~9%范围内增加,黄豆酱中氨基酸态氮含量呈下降趋势,当酱 渣添加量<3%时,氨基酸态氮含量(1.14 g/100 g)较对照组(1.18 g/100 g)无显著差异(P>0.05);当酱渣添加量为1%时,黄豆酱a*值(15.80)和L*值(24.80)最大,且硬度、稠度、黏性指数均与对照组无显著差异(P>0.05);添加酱渣后,黄豆酱的风味物质种类及综合 感官评分均高于对照组,当酱渣添加量为7%和3%时,黄豆酱中风味物质种类最多(33种)和综合感官评分最高(75.42分)。 综合考虑, 添加3%酱渣不会降低黄豆酱品质,且在风味物质及综合感官评价方面更具优势,该研究结果可为酱渣在黄豆酱生产中的应用提供 参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号