首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
周真  齐忠亮  秦勇 《红外与激光工程》2012,41(10):2689-2693
在光散射测量系统中,半导体激光器(LD)的工作稳定性直接影响检验结果。为了得到稳定的光功率输出,设计了包含自动温度控制与自动电流控制的LD驱动系统。应用0.5 mA恒流源对PT100温度传感器供电,将LD工作温度转化为电压信号,经前置放大电路与电压比较电路处理后,通过PI控制半导体制冷实现恒温控制系统;根据闭环负反馈原理设计自动电流控制系统以及相应的辅助电路,能为LD提供稳定的、连续可调的驱动电流。经实验表明,系统在驱动额定功率为20 mW下工作时,可保证激光器输出功率稳定性优于0.2%。  相似文献   

2.
半导体激光器自动控制系统设计   总被引:6,自引:0,他引:6  
根据半导体激光二极管的工作原理 ,设计了一种利用单片机实现半导体激光器功率稳定输出的自动控制系统。该系统包括恒流源、光功率反馈、保护电路、温度控制等部分。系统具有激光功率值的实时控制、显示和设置 ;工作温度值的实时控制、显示和设置 ;系统软开关和软保护等功能。  相似文献   

3.
为了使半导体激光器的电路级模拟更容易,本文建立了一个有光反馈的半导体激光器大信号SP CE模型,并对激光器的开启延时、张驰振荡和稳定时的光功率与光纤到激光器发光端面的距离及反射光功率大小间的关系进行了研究.  相似文献   

4.
重复频率及占空比大范围可调的半导体激光器通用电源   总被引:1,自引:1,他引:0  
介绍了一种多功能通用半导体激光器驱动电源,该电源可以在连续和脉冲两种模式下工作.在脉冲模式下能输出方波、正弦波和三角波,脉冲重复频率和占空比大范围独立可调;采用半导体制冷片作为制冷元件,对激光器工作温度进行控制;同时还采用了防浪涌电路、慢启动电路和过流过压保护等保护电路,从而实现了半导体激光器光功率稳定、可靠、准确输出.该电源已成功地应用于我们研制的增益开关型半导体激光器泵浦的绿光激光器中.  相似文献   

5.
单片机控制的半导体激光驱动电源   总被引:18,自引:2,他引:16  
介绍一种采用单片机控制的连续运转半导体激光器驱动电源,系统包括恒流源、保护电路、温度控制、光功率反馈环等,部分结合硬件及软件,实现了激光二极管的可靠保护以及光功率的稳定、准确输出。  相似文献   

6.
为了使半导体激光器的电路级模拟更容易,本文建立了一个有光反馈的半导体激光器大信号SPICE模型,并对激光器的开启延时、张驰振荡和稳定时的光功率与光纤到激光器发光端面的距离及反射光功率大小间的关系进行了研究.  相似文献   

7.
设计了半导体激光器恒定功率驱动电路,采用负反馈运算放大电路构成恒流源,电容充放电模块构成稳压环节,以高精度电流检测芯片MAX4008监测PIN光电探测器探测电流,以此为基准,引入功率反馈环节,稳定输出功率。阐述并分析了电路原理与实验结果,表明电路运行稳定,实现了精确的自动功率控制。  相似文献   

8.
数字式半导体激光驱动电源控制系统设计   总被引:6,自引:1,他引:5  
介绍了一种单片机控制的半导体激光驱动电源控制系统。通过恒流源及光功率反馈控制半导体激光器的工作电流;采用数字式温度传感器测温,半导体制冷器作为制冷元件,对半导体激光器进行恒温控制;同时还采用了一系列的保护措施,从而实现了半导体激光器光功率稳定、可靠、准确输出。  相似文献   

9.
针对半导体激光器(LD)的驱动特性 ,设计了一种基于开关电源的LD 驱动电路.利用电源控制芯片TL494实现了LD的恒流驱动和过压保护 ,通过对输出光功率的检测实现了光功率的自动补偿功能.实验表明,该驱动电路具有低纹波系数、高效率和光功率补偿功能,光功率输出稳定度优于0.5%,可满足LD实际工作的需要.  相似文献   

10.
大功率半导体激光驱动电源的研制   总被引:1,自引:1,他引:0  
介绍了一种利用单片机控制的大功率半导体激光驱动电源。系统采用恒流源、光功率反馈、继电保护、慢启动、慢关闭等软保护措施,实现对半导体激光器输出光功率的软调整及有效保护。同时,采用半导体温度控制技术,对半导体激光器进行恒温控制,从而实现了半导体激光器光功率稳定、可靠、准确输出。经实验证明,在0℃-40℃的环境温度下,该驱动电源可使激光器的光功率稳定度优于0.5%;温度控制精度优于±0.3℃。  相似文献   

11.
在半导体激光器的使用过程中,驱动电路直接影响着激光器的稳定性。对此文中提出了一种高效、稳定,宽功率输出范围的设计方案,采用采样电阻和恒流电路实现稳定的闭环控制,得到恒定的驱动电流;利用热敏电阻温度特性,温度控制电路结合单片机控制系统,实现温度的闭环控制,从而实现了稳定的温度控制要求;结合恒温,恒流控制以及单片机系统,设计功率闭环控制方案。实验结果表明,不同温度下,功率计测得功率与驱动电流成良好的线性关系,且功率范围宽、电路可靠工作时间长、激光器单色性稳定、系统稳定性好。  相似文献   

12.
张龙  陈建生  高静  檀慧明  武晓东 《红外与激光工程》2018,47(10):1005003-1005003(7)
为了解决大功率半导体激光器的输出波长和功率的稳定性问题,设计了一套大功率激光器恒流驱动电源及温控系统。利用深度负反馈电路实现对激光器驱动电流的恒流控制,采用硬件比例-积分(Proportional-Integral,PI)温控电路结合恒流驱动,控制半导体制冷器(Thermoelectric Cooler,TEC)的工作电流,实现激光器工作温度的精确控制。所设计的驱动电源可实现输出电流0~12.5 A连续可调,同时具有电流检测、过流保护、晶体管-晶体管逻辑(Transistor-Transistor Logic,TTL)信号调制等功能。所设计的温控系统的控制精度可达到0.05℃,同时设定温度连续可调,温度可实时监测。实验结果表明该设计能够保证稳定的电流输出和温度控制,满足大功率激光器的使用要求。  相似文献   

13.
为了解决布里渊光纤传感系统中半导体激光器光源输出功率和波长易受驱动电流和温度影响的问题,设计了一种高精度恒流驱动和温控电路。该电路利用深度负反馈积分电路对激光器驱动电流进行精密的恒流控制,同时采用集成温度控制芯片MAX1978控制半导体制冷片的工作电流,实现对激光器工作温度的精确控制。结果表明,本设计实现了驱动电流0mA~100mA可调,电流控制最大相对误差为0.06%,电流稳定度为0.02%,温度控制最大误差为0.03℃,在温控的条件下,光功率稳定性达到0.5%,最大漂移量为0.005dBm。该设计实现了对电流和温度的有效控制,保证了输出光的稳定性。  相似文献   

14.
有些飞行器的表面安装有基于半导体激光器模块的激光信标系统,用于发出指定功率的稳定光束来配合地面光电系统对激光信标的捕获、识别和跟踪。针对该激光信标系统在宽温度范围下的高功率稳定性需求,设计了两种半导体激光器模块功率控制电路,分别对激光输出功率进行闭环控制和开环控制,采用国产和进口的激光器分别测试了两种控制电路在高低温下的功率控制效果,测试结果表明定电压开环控制电路的控制效果优于定功率闭环控制电路。  相似文献   

15.
一种高稳定连续可调半导体激光器驱动源   总被引:2,自引:0,他引:2  
在连续变量相干光系统中,半导体激光器工作的稳定与否直接影响着检测结果。注入电流和工作温度是影响半导体激光器工作稳定的主要因素。因此激光器的驱动电源应是长时间、高稳定的恒流源,且带有恒温控制。采用电流串联负反馈技术,对控制量进行闭环控制,可实现高稳定和低纹波系数的驱动电流源,具有恒流特性好、纹波小、抗干扰能力强等优点。并采用自动温度控制电路对半导体激光器进行恒温控制,从而保证输出功率稳定,同时还采用了一系列的保护措施,实现半导体激光器的可靠运行。该系统采用单片机为主机,检测电路异常和控制保护电路,选择电压参数送入数字电压表显示,具有保护电路完善、操作直观的特点。  相似文献   

16.
廖平  莫少武 《激光技术》2013,37(4):541-546
为了实现光纤的精确快速测量, 设计了一种高稳定功率连续可调的1310nm/1550nm半导体激光驱动电源。该电源采用电流串联负反馈技术组成精密恒流源驱动半导体激光二极管,恒温控制电路驱动半导体制冷器,从而保证了激光器输出功率的稳定。控制器局域网络总线电路实现激光源的功率连续可调及激光的选择,通过变速积分PID控制算法消除了积分饱和,加速系统温度的稳定。采用激光保护和软启动电路,实现半导体激光器可靠稳定运行。结果表明,半导体激光器工作在室温25℃时,温度稳定性达0.01℃,激光长期输出功率稳定度达0.018dB。相对于传统的1310nm/1550nm半导体激光光源,该光源稳定性高、稳定速度快、体积小,方便光纤在线测量。  相似文献   

17.
根据大功率、低噪声半导体泵浦光纤激光器对于激光电源的要求,通过LD工作原理和输出特性分析,设计一种以ADuc842高速单片机为主控芯片的LD驱动控制电路。设计采用自动电流控制(ACC)和自动温度控制(ATC)的方式,实现LD的恒流源驱动和恒温控制。设计还引用了双限流电路、浪涌吸收电路及慢启动电路等一系列保护电路,提高了LD的抗冲击能力和工作稳定性。实验结果表明,电流输出稳定度优于0.5%,温度稳定度达到±0.1℃。  相似文献   

18.
作为激光器重要组成部分的激光器电源,其输出不仅要求大电流、低电压、高稳定度,而且工作脉冲频率较高(可达50 MHz)。针对此目标,设计了一种个将5 V、4 A转换为2.4 V、3.3 A恒流输出的激光器电源输出转换电路,为激光器提供稳定的电流,并通过TTL控制电路使输出频率可调。除此之外,笔者本文还讨论了一种半导体激光温度控制电路的设计方案,采用高集成、高性价比和高效率开关型驱动芯片MAX1968实现热电致冷驱动电路,能够实时监视和控制激光器温度,以稳定激光器的输出功率和波长。  相似文献   

19.
半导体激光器的输出波长和功率随温度变化而变化,为了确保激光器工作性能,须对其进行恒温控制。采用脉冲宽度调制功率驱动器DRV595驱动半导体制冷器的方法,设计了一种双向大电流输出的高精度温度控制系统。在S域对系统进行了建模分析,搭建经典比例-积分-微分控制器,采用桥式采样电阻,纯硬件电路实现,结构简单,省掉了数字控制器的复杂软件编写。在常温试验中取得了±0.03℃的控制精度,DRV595集成脉冲宽度调制和双向MOSFET,输出电流最大为±4A。双向电流驱动半导体热电制冷器,实现了无死区控制。结果表明,脉冲宽度调制方式驱动和低输出级电阻大大降低了功率耗散。该系统工作稳定、功耗低、控制精度较高,具有实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号