首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
纸浆浓度控制系统的仿真研究   总被引:2,自引:0,他引:2  
曹露  熊智新  胡慕伊 《计算机仿真》2012,(6):176-179,183
研究纸浆浓度控制问题,针对纸浆浓度控制系统存在的大滞后、非线性和时变性等特点,常规的PID控制器很难达到理想的控制效果。为了改善纸浆浓度控制系统性能,提出了BP神经网络和将神经网络与PID控制规律融为一体的PID神经网络(PIDNN)两种控制方案。通过对纸浆浓度模型辨识和控制问题的分析,应用BP和PIDNN进行了仿真比较研究。结果表明,BP和PIDNN仿真效果都比较理想,但BP网络结构复杂,参数难以调整;用PIDNN方法既具有常规PID控制器结构简单、参数物理意义明确的优点,又具有神经网络自学习、自适应之能力,满足实时控制的要求,对于复杂系统是一种实用而简便的控制方法。  相似文献   

2.
基于RBF辨识的CMAC在淀粉生产线中的控制研究   总被引:1,自引:0,他引:1  
针对淀粉生产线中淀粉乳罐的液位控制精度问题,本文在分析了CMAC神经网络、单神经元和RBF辨识工作原理的基础上,设计了基于RBF辨识的自适应CMAC神经网络控制器调节淀粉生产线中乳液的液位。对自适应CMAC神经网络和基于RBF辨识的CMAC两种控制器进行了设计与仿真。防真结果表明,基于BRF辨识的自适应CMAC具有更好的跟踪效果和较快的响应速度,该系统具有很大的应用价值,不仅可以应用于淀粉生产线而且也为工业控制提供了更为精确的控制。  相似文献   

3.
基于BP神经网络的PID控制器研究   总被引:2,自引:1,他引:1  
BP神经网络的PID控制器依赖于灵敏度信息实现参数在线调整,获得灵敏度信息非常重要。利用符号函数来获得灵敏度信息,计算不精确,利用RBF对被控对象在线辨识获得灵敏度信息,收敛速度慢。提出了一种新方法,即在RBF神经网络辨识的基础上,当误差较大时,利用符号函数获得灵敏度信息,以加速收敛;当误差较小时,利用RBF神经网络在线辨识获得灵敏度信息,以提高控制精度。仿真结果表明算法收敛速度快、精度高,控制效果优于符号函数实现的参数调整方法。  相似文献   

4.
对一些复杂的系统。传统PID或模糊控制很难得到满意控制效果,本文提出采用基于RBF神经网络和遗传算法的自适应模糊控制器来进行控制。由遗传算法在线优化模糊控制器的比例因子、模糊推理规则和隶属函数。并由RBF网络辨识被控对象的动态特性,以评价模糊控制器控制性能。仿真实验表明。优化后的Fuzzy控制器具有较强的学习和自适应控制能力,控制效果优于没有寻优的Fuzzy控制。  相似文献   

5.
小型潜艇水下潜行采用蓄电池供电,通过全电力供电系统推进.以蓄电池为直流电源,在推进系统正常运转的状况下,开关电源电压输出值保持恒定;传统的PID控制器很难对全桥DC-DC开关电源进行精确控制,因此,将粒子群算法(PSO)、BP神经网络与径向基函数(RBF)神经网络与传统PID控制相结合,提出带有RBF神经网络辨识的PSO BP-PID控制方法;通过神经网络在线自学习对PID3个参数在线调整,最终实现系统恒电压输出控制;仿真结果得出:带有RBF神经网络辨识的PSO-BP PID控制算法可以很大的改善系统控制效果,同时使系统具有更好的在线调整能力.  相似文献   

6.
直接转矩控制中的定子电阻辨识方法研究   总被引:2,自引:0,他引:2  
刘国荣  周平 《控制工程》2012,19(1):41-43,80
针对传统的异步电机直接转矩控制在电机低速运行时系统性能受定子电阻变化影响较大的问题,详细分析了定子电阻变化对系统控制性能的影响,提出了一种基于RBF神经网络的定子电阻辨识方法.该方法应用梯度算法训练RBF神经网络各参数.用该方法对定子电阻进行辨识,具有辨识精度高,响应迅速等优点.对该方法在基于Simulink仿真软件上进行仿真,并与BP神经网络对定子电阻辨识时进行比较.仿真结果表明,该方法优于BP神经网络,可以有效地提高直接转矩控制系统的低速运行性能.  相似文献   

7.
为了高效控制工质出口温度,维持换热器稳定运行,针对Smith预估控制算法及径向基函数(RBF)神经网络辨识单神经元比例-积分-微分(PID)控制算法特点,提出了Smith控制算法和RBF神经网络辨识单神经元PID相结合的控制策略,对Smith控制算法在结构上进行了改进,以提高RBF神经网络辨识单神经元PID控制的抗干扰能力,减少Smith控制算法对模型的依赖程度.仿真分析表明:应用于换热器工质出口温度控制系统,改进算法控制性能显著优于其它控制方法,抗干扰能力得到了大幅提高.  相似文献   

8.
为改善三轴转台系统性能.结合传统控制方法与神经网络控制,提出一种基于RBF辨识转台系统的CMAC神经网络与PID并行的复合控制算法.算法采用RBF辨识对象模型,CMAC实现前馈控制,并实现PID控制参数的在线整定和优化.也给出了CMAC控制器算法和系统辨识的RBF网络算法.以某转台模型为对象,仿真结果表明算法具有了传统控制的优点,进一步也证明了算法的可行性和优越性,且具有了更强的适应性和鲁棒性,能更为有效地应用于转台系统中.  相似文献   

9.
为了更好地解决常规PID控制精度差、无自适应性、跟随性能差等问题,将RBF神经网络与常规PID控制算法结合起来,可以实现动态辨识,利用神经网络的学习能力,可以根据控制环境在线修正PID控制的比例、积分、微分参数,使其更加符合调节需求,从而能够提升系统的实时性以及适应性,通过加入阶跃信号和正弦信号两种不同的信号,基于Matlab软件中的Simulink环境对控制系统进行仿真,验证基于RBF神经网络PID控制算法的控制性能。通过控制系统仿真结果得出结论:基于RBF神经网络PID控制算法具有响应速度快、超调小和跟随性能好、无静态偏差等优点,其控制效果明显优于常规PID控制算法。  相似文献   

10.
提出一种新型的智能PID控制器。将前馈神经网络BP网络作用在弹性积分控制器上,在线调整控制器的参数,采用RBF神经网络作为辨识器在线辨识控制输出对控制输入对象变化的灵敏度信息,提高系统的控制精度。该智能控制器实现了整体性能优化和个别参数优化相结合的思想。通过MATLAB仿真,该新型控制器具有超调量低、鲁棒性好等控制效果。  相似文献   

11.
基于合作粒子群算法的PID神经网络非线性控制系统   总被引:7,自引:2,他引:5  
PID神经元网络 (PIDNN)模型为一种新型的神经网络模型,兼有PID与神经网络的共同优点,应用于复杂的控制系统.取得优良控制性能,但其后向传播算法 (BP)限制了该模型的应用范围.为实现对非线性多变量系统的有效控制,扩展神经网络的应有范围,本文采用PIDNN神经网络设计了多变量PIDNN神经网络 (MPIDNN)控制器,并用本文作者提出的合作粒子群算法 (CPSO)取代了传统BP后向传播算法,通过比较MPIDNN_CPSO、MPIDNNCRPSO、MPIDNN_PSO和MPIDNN_BP4种控制器的控制性能,仿真结果表明,基于CPSO算法的MPIDNN控制器实现了对非线性多变量不对称系统的有效控制.与传统的BP算法相比,CPSO算法提高了控制系统的稳定性、精确性与鲁棒性.  相似文献   

12.
研究了基于PID神经元网络的智能车多变量控制系统。智能车的转向控制与速度控制相互关联、相互影响、且都具有时变性,针对智能车在行驶时要求电机的动态响应速度要快、舵机的动态响应时间要短的特点,提出了将PID神经元网络(PIDNN)控制器及其算法应用到智能车的控制系统中来对传统PID控制进行改进。PIDNN控制系统不依赖智能车电机与舵机的数学模型,能够根据控制效果在线训练和学习,调整网络连接权重值,最终使系统的目标函数达到最小来实现智能车的精确控制。Matlab仿真测试表明,PIDNN控制系统的响应快,超调小、无静差,与传统PID控制算法相比,大大提高了智能车控制系统的性能。  相似文献   

13.
针对不同农作物对于土壤湿度的不同要求,提出一种基于PID神经网络的土壤湿度控制算法。该算法综合PID神经网络和改进的粒子群算法,能够满足在大块田地中的多种农作物对于土壤湿度的不同需求。仿真分析的结果表明,该算法能够有效地满足各类农作物对土壤的湿度要求,提升了系统整体控制效果,缩短了控制时间,具有良好的动态性能。  相似文献   

14.
针对六旋翼无人机比例-积分-微分(PID)控制器参数优化困难的问题,采用了PID神经网络(PIDNN)控制方法,利用其非线性映射和自学习的特性,实现了姿态控制参数的动态调整,增加了系统的自适应性.为验证方法的有效性,通过Matlab的Simulink模块构建了六旋翼无人机数学模型;利用S函数实现了基于反向传播(BP)算法的PIDNN控制器;将仿真结果与传统PID控制效果进行对比,结果表明:在缩短姿态调整时间与减少超调量方面,PIDNN方法控制效果优于PID方法.  相似文献   

15.
介绍了两种新的基于遗传算法的径向基神经网络(GA-Based RBFNN)训练算法.这两种算法均将遗传算法用于优化径向基神经网络的聚类中心和网络结构.第一种GA-Based RBFNN算法对所有训练样本采取二进制编码构成个体,优化径向基函数中心的选取和网络结构;第二种GA-Based RBFNN算法中,RBFNN采用自增长算法训练网络隐含层中心、采用十进制对距离因子ε编码构成染色体,优化网络.将两种GA-Based RBFNN算法应用于Fe、Mn、Cu、Zn同时测定的光谱解析,计算结果表明,本文的GA-Based RBFNN算法较通常的遗传算法与径向基人工神经网络(GA-RBFNN)联用,即在GA选择变量的基础上,再用RBFNN作数据解析的GA-RBFNN方法,在增强网络的泛化能力、提高预测的准确性等方面具有明显的优势.从这两种GA-Based RBFNN的比较看,第二种算法在性能上优于第一种算法.  相似文献   

16.
带优选聚类算法的 RBF 网络辨识器及应用   总被引:2,自引:1,他引:2  
以RBF神经网络为模型框架,解决非线性系统的辨识问题。针对RBF网络的结构辨识问题,提出一种优选聚类算法,并用该算法,依据输入样本优选确定RBF神经网络的隐含层节点个数,采用新型二阶递推学习算法估计RBF网络中的参数和权值。上述混合算法,同时解决了RBF网络结构和参数辨识问题,大大提高了RBF网络的建模和预测精度。应用实例表明了所提出方案的有效性。  相似文献   

17.
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.  相似文献   

18.
In this paper,an improved PID-neural network(IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming(DHDP).As one of online learning algorithm of approximate dynamic programming(ADP),DHDP has demonstrated its applicability to large state and control problems.Theoretically, the DHDP algorithm requires access to full state feedback in order to obtain solutions to the Bellman optimality equation. Unfortunately,it is not always possible to access all the states in a real system.This paper proposes a solution by suggesting an IPIDNN configuration to construct the critic and action networks to achieve an output feedback control.Since this structure can estimate the integrals and derivatives of measurable outputs,more system states are utilized and thus better control performance are expected.Compared with traditional PIDNN,this configuration is flexible and easy to expand. Based on this structure,a gradient decent algorithm for this IPIDNN-based DHDP is presented.Convergence issues are addressed within a single learning time step and for the entire learning process.Some important insights are provided to guide the implementation of the algorithm.The proposed learning controller has been applied to a cart-pole system to validate the effectiveness of the structure and the algorithm.  相似文献   

19.
A saliency back‐EMF estimator with a proportional–integral–derivative neural network (PIDNN) torque observer is proposed in this study to improve the speed estimating performance of a sensorless interior permanent magnet synchronous motor (IPMSM) drive system for an inverter‐fed compressor. The PIDNN torque observer is proposed to replace the conventional proportional–integral–derivative (PID) torque observer in a saliency back‐EMF estimator to improve the estimating performance of the rotor flux angle and speed. The proposed sensorless control scheme use square‐wave type voltage injection method as the start‐up strategy to achieve sinusoidal starting. When the motor speed gradually increases to a preset speed, the sensorless drive will switch to the conventional saliency back‐EMF estimator using the PID observer or the proposed saliency back‐EMF estimator using the PIDNN observer for medium and high speed control. The theories of the proposed saliency back‐EMF rotor flux angle and speed estimation method are introduced in detail. Moreover, the network structure, the online learning algorithms and the convergence analyses of the PIDNN are discussed. Furthermore, a DSP‐based control system is developed to implement the sensorless inverter‐fed compressor drive system. Finally, some experimental results are given to verify the feasibility of the proposed estimator.  相似文献   

20.
与传统统计方法的分类器相比较,人工神经网络(ANN)方法应用于遥感影像分类,不需预先假设样本空间的参数化统计分布,具有复杂的映射能力。大多数ANN分类器采用误差反向传播(BP)学习算法的多层感知器模型(BPNN),其主要缺陷是学习速度缓慢、容易陷入局部极小而导致难以收敛等。基于径向基函数(RBF)映射理论的神经网络模型融合了参数化统计分布模型和非参经线性感知器映射模型的优点,在实现快速学习的同时,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号