首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
将聚酰胺66(PA66)与聚乙二醇(PEG)分别按10∶90、20∶80、30∶70、40∶60的比例混合,并以甲酸为溶剂配制成纺丝液,采用静电纺丝法在铝箔上聚集12 h后制得厚度均匀的纳米纤维膜,对膜表面的微观结构及纤维直径进行分析,并测试了膜的力学性能、热学性能及其分子结构。研究结果表明:当PA66含量较小时,纳米纤维表面附着的颗粒状物质较少,纳米纤维直径较粗,表面较光滑;纳米纤维复合膜在1 515.5 cm~(-1)和1 642 cm~(-1)处出现双吸收峰,在3 078~3 082 cm~(-1)存在弱吸收峰;纳米纤维复合膜拉伸断裂强度和断裂伸长率均小于纯PA66纳米纤维膜,纳米纤维复合膜的热分解过程由PEG和PA66的熔融过程放热组合而成,当PA66与PEG的混合比例为10∶90时,残留物在210℃~310℃时分解速度很快。  相似文献   

2.
为使柔性摩擦纳米发电机更好地贴合人体,且方便制备,将柔性摩擦纳米发电机进行服饰化。通过锥形 编织的方法将锦纶(PA6)与涤纶(PET)缝纫线分别缠绕在镀银的金属长丝表面,形成2 种皮芯结构的复合导电纤 维绳,其中皮层PA6与PET纤维缝纫线作为摩擦层,芯层镀银金属长丝作为电极层,将2 种复合导电纤维绳经机织 制备成柔性自供能织物作为摩擦纳米发电机,收集人体运动机械能并转化为电能,进而为可穿戴设备供电;同时对 该发电织物的表面形貌和输出性能进行表征。结果表明:这种摩擦纳米发电织物的开路电压为20.0 V,短路电流 为1.50 μA,瞬时功率最大为1.6 mW/m2 ;该柔性摩擦纳米发电机由缝纫线编织而成,具有很好的柔性、透气性以及水洗性,材料廉价易得,且制备工艺简单。  相似文献   

3.
为了获得环保、柔软、透气和高压电性的材料,增加压电材料在纳米发电机,传感器,可穿戴电子器件等方面的应用,采用静电纺丝技术制备出了高压电性的氧化锌/聚偏氟乙烯(ZnO/PVDF)复合纤维膜材料。通过扫描电子显微镜、全反射傅里叶变换红外光谱仪、X射线衍射仪及示波器对压电复合纤维膜的形貌、结构和压电性进行了表征。结果表明:在PVDF基材中加入适量的氧化锌纳米颗粒(ZnO NPs)可在一定程度上提升PVDF纤维膜的结晶度和电活性β晶型含量增加,使PVDF中总的β晶型含量增加;同时,ZnO NPs自身具有压电性,也可进一步提升复合材料的压电性,使复合纤维膜的输出电压显著提高。当ZnO NPs质量分数为30%时,复合膜的输出电压高达60V,与纯PVDF纤维膜的输出电压相比,复合纤维膜的压电性提升了200%。  相似文献   

4.
为获得轻薄柔软的伤口敷料,并使其具备优异的压电和抗菌性能,以聚偏氟乙烯(PVDF)为原料,掺杂不同质量分数的盐酸恩诺沙星(Enro),采用静电纺丝技术制备载药PVDF复合纳米纤维膜。分析了复合纳米纤维膜的形貌、化学结构对其压电性能、药物缓释和抗菌性能的影响。结果表明:PVDF质量分数为8%时,纤维平均直径为(753±128) nm,纤维网成膜良好,复合纳米纤维膜直径随着Enro质量分数的增加呈先增大后减小趋势;纺丝过程中PVDF由α晶型转变为β晶型,使纤维膜具备了压电性能,可产生9 mV的输出电压;当 Enro质量分数为15%时,纤维膜释药速度平稳、持续时间长且具备优异的抗菌性能,适合用作伤口敷料。  相似文献   

5.
简要介绍了摩擦纳米发电机的工作原理、结构以及工作模式;着重介绍了以纤维素纳米纤维(CNF)膜或CNF纸作为基础摩擦带电材料的摩擦纳米发电机的构建与应用,主要包括以CNF纸或CNF膜直接作摩擦带电材料、以化学改性CNF膜作摩擦带电材料和以CNF复合膜作摩擦带电材料的摩擦纳米发电机。  相似文献   

6.
为制备功能性的聚酰胺6(PA6)纳米纤维膜,采用静电纺丝技术制备PA6/聚乙烯吡咯烷酮(PVP)共混纳米纤维膜,并对纤维膜的表面形貌、力学性能和亲水性能进行表征。结果表明,当PA6纺丝液质量分数为28%,PVP的加入量为0.5 g时,纤维膜的微观形貌较好,制备出的纤维直径为132 nm,断裂强度为9.68 MPa,断裂伸长率为31.89%,亲水角为(32.4±1.2)°。研究了不同纺丝时间对纤维膜空气过滤性能的影响,当纺丝时间为0.5 h时,纤维膜具有较好的过滤性能,过滤效率为99.5%,过滤压降为476 Pa。红外分析结果表明,在PA6中加入PVP,在搅拌的过程中二者均匀融合,PVP小分子填充在PA6大分子中,可使纤维膜的亲水性提高。制得的PA6纳米纤维膜可作为加湿器中的湿膜材料得到应用。  相似文献   

7.
静电纺纳米纤维具有比表面积大、纤维直径细、孔隙率高等优点,广泛应用于空气过滤、防水透湿等领域。采用静电纺丝技术,通过在聚偏氟乙烯(PVDF)中掺杂不同质量分数的氧化石墨烯(GO)来制备PVDF/GO复合纳米纤维,并利用扫描电镜对复合纳米纤维膜的形貌结构进行表征测试。结果显示:当纺丝电压为15 kV时, PVDF纳米纤维形貌较为规整,纤维粗细分布均匀,平均直径为537.61 nm;在PVDF机制中掺杂0.2%GO时,出现了较多的超细纳米纤维,粗细纤维分布较为明显;当纳米纤维膜具有一定厚度时,显示了较好的过滤效率,其过滤效率和过滤阻力分别为99.84%和44.38 Pa。由此可见,所制备的GO掺杂PVDF纳米纤维在空气过滤领域有较大的应用前景。  相似文献   

8.
为提高聚偏氟乙烯(PVDF)的压电性能,以PVDF和正硅酸乙酯(TEOS)为原料,N,N-二甲基甲酰胺(DMF)和丙酮为混合溶剂,利用原位复合溶胶-凝胶法和高压静电纺丝技术制备纳米SiO2原位掺杂PVDF复合纳米纤维膜,并分析纳米纤维膜的表面微观形貌、化学结构、力学性能以及压电性能等。结果表明:复合纳米纤维膜的面密度与厚度随TEOS质量的增加而增加;静电纺丝使PVDF中部分α相转变为β相,纯PVDF纳米纤维膜的β相含量是PVDF粉末的1.54倍,为(31.42±0.62)%;且原位掺杂SiO2后β相含量进一步提高,拉伸强力与输出电压均呈先增大后降低的趋势,当TEOS质量为1.643 g时PVDF纳米纤维膜β相含量最高为(42.59±0.62)%,原位掺杂PVDF纳米纤维膜拉伸强力最大为(8.03±0.19) N,输出电压最高为(2.33±0.13) V。  相似文献   

9.
为实现工艺参数对纳米纤维包芯纱的结构调控,采用连续水浴静电纺丝的方法,以聚对苯二甲酸乙二醇酯(PET)纤维为芯纱,聚酰胺6(PA6)纳米纤维为包覆层,制备兼具纳米纤维特性和传统纱线力学性能的纳米纤维包芯纱。对PET/PA6纳米纤维包芯纱的形态、晶体结构和力学性能进行分析与表征。结果表明:纳米纤维包芯纱具有良好的皮芯结构;PA6包覆层的纳米纤维直径为66~80 nm,其孔隙率随喷丝速率的提高而下降,结晶度在19%~24.15%范围内,且随喷丝速率的提高而减小;PA6纳米纤维包覆层的断裂强度和断裂伸长率随喷丝速率的增大而降低,其断裂强度降为常规PA6纤维的1/5;纳米纤维包芯纱保持了芯纱的强力与断裂伸长率等力学性能。  相似文献   

10.
张亦可  贾凡  桂澄  晋蕊  李戎 《纺织学报》2021,(3):44-49,55
为提高聚偏氟乙烯(PVDF)的压电性能,采用静电纺丝法将碳纳米管(CNTs)引入到PVDF纳米纤维膜中制备CNTs/PVDF纳米纤维膜,并组装成三明治结构的柔性压电传感器,探究CNTs质量分数对CNTs/PVDF纳米纤维膜压电性能的影响。借助扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、万能试验机以及数字示波器对纳米纤维的形貌、结构、力学性能及压电性能进行表征。结果表明:CNTs/PVDF纳米纤维膜具有良好的力学特性,CNTs的添加有利于晶体结构中β晶型的形成;当CNTs质量分数为5%时,CNTs/PVDF纳米纤维的晶体结构中β晶型含量最多,压电性能最强,此时柔性传感器的输出电压达到最大值7.5 V。  相似文献   

11.
利用静电纺丝技术制备PAN/竹炭粉纳米纤维膜,探讨了竹炭粉含量对纳米纤维膜微观形貌与纤维直径的影响,以及复合纳米纤维膜的过滤性能。研究结果表明:在相同工艺参数条件下,加入质量分数为2.0%的竹炭粉时,所得纳米纤维膜中纤维的直径较小(397.26nm),且纤维直径分布均匀。以纯PAN纳米纤维膜+PAN/竹炭粉纳米纤维膜+纯PAN纳米纤维膜结构作为芯层,聚丙烯(PP)非织造布作为外层制成的过滤材料,其流量大、阻力低,过滤效率高达99.85%。  相似文献   

12.
杜芳 《针织工业》2023,(7):34-37
使用静电纺丝和溶剂热两步法制备负载二氧化钛(TiO_2)与碘氧化铋(BiOI)异质结的聚偏氟乙烯(PVDF)纳米纤维膜,考察其形貌结构、晶相结构和光吸收特性,然后将其作为光催化剂应用于有机染料的氧化降解过程中。结果表明,PVDF纳米纤维表面能够均匀附着TiO_2,进而生长出由直径为600~800nm、厚度为20~30 nm的片状BiOI组成的多尺度球形结构。BiOI作为主要捕光组分,能够将纳米纤维膜的吸收带边红移至600 nm,使其在可见光辐射下能够有效催化染料的降解反应,90 min后罗丹明B脱色率达到94.9%,而且超氧自由基(·O_2~-)和空穴(h~+)为该体系的主要活性物种。此外,该纳米纤维膜作为光催化剂具有良好的重复利用性能。  相似文献   

13.
采用静电纺丝方法制备了β晶相PVDF纤维膜,通过SEM和XRD表征了PVDF静电纺纤维膜形貌和β晶相转化,并利用自搭建压电信号测试装置测试了PVDF静电纺纤维膜在周期性压缩下的幅频特性和灵敏度。结果表明:PVDF静电纺纤维膜无串珠结构,纤维直径分布范围为(418±157)nm,晶型结构以β晶相为主;周期性压缩PVDF静电纺纤维膜在低频(0.1~1.0 Hz)时,随着频率的增加纤维膜的压电信号输出逐渐增加,激励频率高于1.0 Hz后纤维膜信号输出不随频率而变,显示出稳定的特征,且压电信号的输出正比于激励动程,在0.4~1.0 mm的动程范围内,灵敏度达到375 m V/mm。  相似文献   

14.
日间辐射制冷材料因不需要能源输入,仅依靠大气窗口便可将热量发送到外太空实现降温,在房屋遮盖物、车罩、降温服饰等领域显示优异的应用潜力。试验选择红外高发射的聚偏氟乙烯(PVDF)和二氧化硅(SiO_(2))球作为高发射基质材料,利用静电纺丝方法构建具有串珠结构的PVDF/SiO_(2)纳米纤维膜。相较常规的纤维结构,串珠结构PVDF/SiO_(2)纳米纤维膜中纤维直径分布较宽,可提高Mie散射强度,且粒子的掺杂增加了光的散射次数,使得太阳光反射率高达97.15%;同时,PVDF和SiO_(2)固有的红外高吸收性能可赋予纤维膜高达97.80%的中红外发射率,呈现优异的日间辐射制冷性能。在太阳光照射下,PVDF/SiO_(2)纳米纤维膜表面温度显著低于环境和其他纺织品的表面温度,并在人体热管理和物体降温方面表现出优异的应用能力。  相似文献   

15.
为将具有高表面吸附能和高孔隙率的静电纺纳米纤维膜作为一种新型膜材料应用于染料废水处理,以达到高效过滤染料的目的,研究了在0.1 MPa恒压死端过滤条件下静电纺聚酰胺6/聚酰胺66(PA6/PA66)纤维膜对质量浓度为0.1 g/L分散蓝2BLN悬浮液和弱酸性蓝N-RL水溶液的过滤效果,通过SEM、孔径分析测试仪、纳米粒径测试仪和紫外-可见分光光度仪观察及测试,分析了静电纺PA6/PA66纤维膜的表面形态、孔隙结构、染料粒径分布及对染料截留性能的影响。结果表明,连续过滤1 h后,静电纺PA6/PA66纤维膜的表面均沉积一层致密的滤饼,对分散蓝2BLN的截留率达95.6%,对弱酸性蓝N-RL的截留率仅为35.1%,但是对2类染料的过滤通量相差不大。  相似文献   

16.
纳米蛛网纤维膜由普通静电纺纤维和类似蜘蛛网形态的超细蛛网纤维组成.采用静电纺丝工艺在不同聚酰胺6(PA 6)和氯化钡质量分数条件下制备纳米蛛网纤维膜.通过扫描电子显微镜(SEM)观察纤维膜的表观形貌,计算纳米纤维直径、蛛网纤维直径和蛛网覆盖率.结果表明:随着PA6质量分数的提高,纳米纤维和蛛网纤维的直径均逐渐增大,适中...  相似文献   

17.
聚偏氟乙烯(PVDF)是一种新型高分子材料,通过静电纺丝法制备的PVDF纳米纤维膜具有压电系数高、生物相容性好、质轻柔软等优点,近年来在各领域得到广泛应用。为了充分认识PVDF纤维膜,简要对比了溶液流延法、静电纺丝法制作PVDF纤维膜的优缺点,详细介绍了溶液静电纺丝法制备聚偏氟乙烯纳米纤维膜的工艺过程。重点分析了当前PVDF纳米纤维膜在压电传感器、生物医学、过滤材料、电池隔膜等领域的应用现状。探索了在生产和应用领域上存在的问题,并提出了PVDF纳米纤维膜的发展前景。  相似文献   

18.
用98%甲酸溶解聚酰胺6(PA 6)制备质量浓度为13%纺丝液,经静电纺丝获得厚度31~60μm、纤维平均直径217 nm、表面平均孔径为234 nm的纳米纤维非织造膜.由于该纤维膜的断裂强度仅为8.06 MPa,实验以普通聚酯纤维织物为支撑基布,测试了不同样品的过滤性能.结果发现:在气流速度为2.83 L/min时,...  相似文献   

19.
采用热轧工艺复合涤纶织物和静电纺聚偏四氟乙烯(PVDF)纳米纤维膜,开发具有防水性、透湿性、透气性的复合织物。探讨纺丝液中PVDF质量分数和纺丝电压对PVDF纳米纤维膜形貌的影响,测试采用3种复合工艺制得的单层膜复合织物、单面双层膜复合织物和双面单层膜复合织物的瞬时接触角和动态接触角,以及单层膜复合织物的透湿性、透气性和力学性能。结果表明:纺丝液中PVDF的质量分数为23%、纺丝电压为15、16 kV时,可制得纤维直径为300~400 nm且粗细均匀的PVDF纳米纤维膜;单层膜复合织物、单面双层膜复合织物和双面单层膜复合织物的接触角分别为135.1°、142.4°和136.7°,8 min后接触角的降幅分别为5.40%、10.57%和10.31%;与涤纶织物原样相比,单层膜复合织物的透气率下降35.53%,透湿量下降6.93%,力学性能提高。  相似文献   

20.
为深入探究影响纳米纤维膜过滤机制以开发和应用高端空气过滤材料,分析了静电纺纳米纤维膜和聚四氟乙烯拉伸膜与非织造布复合的空气过滤材料结构与性能,分别对其形貌、热力学性能、透气性等进行了分析与评价。实验结果表明,过滤材料本身的结构和纤维直径以及表面电势对其过滤性能影响显著,纤维直径越细,膜孔径越小,纤维间的结构会相对紧密,从而导致透气性较差,过滤效率更好。其中表面电势是影响材料过滤效率的主要因素,表面电势越高,过滤效果越好。静电纺锦纶6纳米纤维膜/聚酯纤维非织造布(PA6/PET)复合空气过滤材料表面电势最高,达1.414 kV,其过滤效率最佳,达到99.57%。PA6/木浆纸复合过滤材料表面电势最小,为0.07 kV,过滤效果仅为22.28%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号