首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用单因素筛选和响应面法对蛹虫草Cordyceps militaris JN168产虫草素的液态发酵培养基进行优化,以确定蛹虫草产虫草素的最佳发酵培养基配方。结果表明,蛹虫草产虫草素的最佳碳源为葡萄糖,最适质量浓度为40 g/L;最佳氮源为牛肉膏,最适质量浓度15 g/L;加入的无机盐及其添加量分别为MgSO40.76 g/L,K2HPO40.63 g/L,CaCl20.66 g/L,Na2HPO40.67 g/L。优化后发酵液中虫草素质量浓度达到633.47 mg/L,是优化前的6倍。  相似文献   

2.
《食品与发酵工业》2014,(10):119-122
在蛹虫草液体培养过程中加入枸杞汁,进行虫草枸杞复合发酵,对发酵过程中虫草菌生长曲线及发酵产物有效成分含量进行了测定。确定了虫草枸杞复合发酵最佳工艺条件为:蛹虫草发酵72 h时向培养基中添加5 g/L的枸杞匀浆液,发酵周期144 h。在此工艺条件下,复合发酵产物产量较虫草菌丝体升高了112.12%,达11.73 g/L。其中虫草素含量11.23 mg/g,虫草酸含量178.21 mg/g,多糖含量30.73 mg/g,较虫草菌丝体分别提高了29.98%,64.46%和97.20%。复合发酵产物抗氧化能力较虫草菌丝体升高了44.62%。  相似文献   

3.
采用丝瓜络作为蛹虫草孢子附着点和植物油吸附基质,经半固态发酵生产虫草素,旨在提高液体表面培养的比表面积,进一步提高虫草素产量。利用单因素和Box-Behnken试验设计分别对玉米油和橄榄油条件下的加液量、孢子接种量和发酵温度进行响应面优化。结果表明,虫草素最佳工艺条件为:植物油用玉米油,加液量为3.0 mL/g,孢子接种量为9.49%,发酵温度为27.3℃,相对湿度90%。在优化后的发酵条件下,虫草素产量达到10.13 g/L,比初始半固态发酵虫草素产量提高了76.48%。综上,发酵温度的控制是获得虫草素高产的关键因素。蛹虫草丝瓜络半固态发酵能够通过提高比表面积获得较高的虫草素产量,为大规模工业化虫草素生产提供理论支持。  相似文献   

4.
以蛹虫草液体发酵菌丝体为原料,通过超声、微波方法提取蛹虫草中的虫草素,超声提取时间为20min;微波功率为200W,微波提取时间为110s,提取得到虫草素结晶体,含量是0.006mg/g.以虫草素为指标,通过正交试验确定蛹虫草液体发酵条件,虫草素含量最高的方案为:接种量15%,温度25℃,转数140r/min,培养时间96h.  相似文献   

5.
为提高虫草素的产量,本实验对蛹虫草固态发酵产虫草素进行优化。通过一系列单因素实验,确定大米为发酵基质,葡萄糖和黄豆粉分别为最适碳源和氮源,得到最佳培养基组成和最佳培养条件:大米30 g(粒径0.90~1.25 mm),料液比(m/v)1∶1.5,葡萄糖3%(按基质算,下同),黄豆粉2%,麦麸1%,接种量30%,种龄2 d,发酵时间12 d。优化后虫草素产量达到4.69%,约为优化之初(0.74%)6.34倍。  相似文献   

6.
为了提高巴西虫草深层液体发酵胞内多糖的产量,本研究采用二次正交旋转组合设计方法,研究了接种量、培养时间、装液量和种子培养时间这四个因素对巴西虫草胞内多糖发酵的影响;建立了二次回归模型,并使用DPS软件进行了条件寻优,确定了巴西虫草胞内多糖发酵的最优工艺参数。结果表明,所得回归方程达到极显著水平,无失拟因素存在。最优发酵工艺为接种量14%、培养时间84h、装液量45m L、种子培养时间60h,在此条件下虫草多糖的产量为7.50mg/m L,较优化前提高了12.4%。在优化条件下,进行三次验证实验,实验值与模型预测值基本符合,说明了二次正交旋转组合设计预测结果的准确性,证实了该方法可用于巴西虫草胞内多糖深层液体发酵的工艺参数优化,为其工业化生产奠定了基础。  相似文献   

7.
汤佳鹏  柳依婷  赵强  董伟  朱俐 《食品工业科技》2012,33(21):181-183,187
研究外源添加物,麸皮、玉米芯、腺苷等对蛹虫草液体发酵合成虫草素的影响,结果表明,发酵5d后加入3g/L腺苷,虫草素的产量最高。当腺苷添加量大于4g/L时,虫草素对腺苷的得率维持在25%,虫草素产量最大能达到1.62g/L。通过分析菌丝体生长与虫草素合成的动力学关系,发现虫草素的合成属于部分生长偶联型发酵。当振荡发酵4d后,静置发酵7d,虫草素的产量达到1.60g/L,产率达到145.5mg/L/d。这一蛹虫草合成虫草素的发酵工艺具有潜在的工业应用价值。  相似文献   

8.
培养条件对蛹虫草液体培养生产虫草素的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了摇瓶液体培养的不同培养条件对蛹虫草液体培养生产虫草素的影响.实验结果表明,蛹虫草液体培养生产虫草素的最宜条件为:培养温度25 ℃,转速150 r/min,初始pH 5.0.在此条件下,经摇瓶培养,获得的生物量和虫草素产量分别为16.20 g/L和264.00 mg/L.  相似文献   

9.
以从青海玉树地区野生冬虫夏草中分离的冬虫夏草菌为材料,采用正交试验设计法对2株不同的冬虫夏草菌CS-2和CS-5液体发酵产虫草素的条件进行了优化。结果表明,CS-2的最优发酵条件为:培养基初始pH 6.5、接种量6%、发酵温度22℃、发酵时间7 d。在此条件下,虫草素产量达到0.98 mg/mL。CS-5产虫草素的最佳发酵条件为:接种量9%、发酵温度20℃、发酵时间6 d、培养基础pH 6.5。在此发酵条件下,虫草素的产量为0.482 mg/mL。  相似文献   

10.
以北虫草菌丝体为主要原材料,通过发酵、调配、灭菌等工艺酿制成风味独特的具有滋补作用的北虫草酒。通过正交试验和对比试验确定了酿制北虫草酒的最佳配方和工艺条件。结果表明:前发酵中最佳发酵温度为25℃,最佳发酵时间为10d,最佳糖度为16%,最佳酵母添加量为1%;亚硫酸的添加量为溶液量的1%,果胶酶的添加量为0.7g/L;成品酒采用巴氏灭菌效果更佳。  相似文献   

11.
蛹虫草液体种制备及发酵生产菌丝体和虫草菌素工艺优化   总被引:2,自引:0,他引:2  
为获得蛹虫草液体种制备和液体发酵生产菌丝体和虫草菌素的最佳工艺,以蛹草拟青霉Peacilomyces militarisBCEC07菌株为菌种,通过对接种量(孢子浓度)的考察,探索不同孢子浓度对蛹虫草液体母种制作效果的影响;通过单因素和正交试验,优化生产虫草菌素各营养因子的最佳种类和配比。结果表明:在1.5×1010孢子数的接种量时制作的母种最适合用于蛹虫草液体发酵产菌丝体和虫草菌素;蔗糖、蛋白胨、MgSO4.7H2O、K2HPO4和NAA是最适合的碳源、氮源、无机盐及生长因子;工艺优化后得出蛹虫草液体发酵产菌丝体的最佳配方为30g/L蔗糖、25g/L蛋白胨、1.5g/L KH2PO4、0.5g/L MgSO4.7H2O和4.0mg/L NAA;产虫草菌素的最佳配方为:30g/L蔗糖、25g/L蛋白胨、1.5g/L KH2PO4、0.5g/L MgSO4.7H2O和3.0mg/L NAA。优化后生物量和虫草菌素总产量分别提高了43.00%(达31.60g/L)和31.60%(达645.12mg/L)。为进一步提高蛹虫草菌丝体及虫草菌素的单位产量提供参考。  相似文献   

12.
蛹虫草和铁元素被证明对人体有着重要的生理作用。通过设计单因素和多因素正交试验,探讨蛹虫草富铁液体深层发酵条件的优化。试验证实,蛹虫草富铁液体深层发酵的最佳培养基配方为:大豆粉35 g/L、蔗糖30 g/L、KH_2PO_41.5 g/L、Mg SO_41.5 g/L、硫胺素5×10~(-5) g/L、Fe SO_4·7H2O 0.3 g/L。最佳培养条件为:pH6,温度26℃,发酵3 d,接种量5%,装液量100 mL/250 mL三角瓶。在此发酵条件下,测得富铁蛹虫草生物量为18.93 g/L,富集铁为16.01 mg/g。  相似文献   

13.
以蛹虫草大米为原料,酿造蛹虫草甜米酒。通过单因素和正交试验,对蛹虫草甜米酒的酿造工艺进行优化。结果表明,蛹虫草甜米酒的最佳酿造工艺条件为:甜酒曲接种量为1.5%,料液比为1∶3.0(g∶mL),发酵温度28 ℃,发酵时间为3 d。在此工艺条件下,蛹虫草甜酒中虫草总糖含量为10.03 g/100 mL,虫草素含量1.24 mg/100 mL,酒精度1.2%vol,感官评分95分。此最佳工艺酿造的蛹虫草甜米酒呈现淡黄色,酒液澄清透明,复合香气协调浓郁,口感甜爽,余味绵长,同时具有较高的营养价值。  相似文献   

14.
李琴  廖红华  张驰 《食品科学》2014,35(14):118-122
对3 种蛹虫草中虫草素含量进行高效液相色谱法测定并比较,以查看不同地区来源的蛹虫草中虫草素含量
的区别,为选育高含量虫草素蛹虫草菌种及改变其培养条件指明方向。首先采用正交试验研究虫草素的提取条件,
获得最适提取工艺,即料液比1∶80、提取时间5 h、提取温度70 ℃,在此条件下虫草素的得率达0.604%(以湖北地区
的蛹虫草作为原料)。然后在此条件下分别对湖北地区(A)、云南地区(B)和本实验室培养(C)的蛹虫草中提
取虫草素并进行测定,结果表明:样品C的虫草素含量远高于A(6.041 mg/g)和B(7.606 mg/g),为26.071 mg/g。
结果显示,不同产地的蛹虫草中虫草素含量有一定区别,这可能与培养蛹虫草所用的菌种和培养条件差异有关。本
研究筛选出来的菌种以及获得的培养方法,对后续研究补硒栽培对蛹虫草中的活性成分虫草素含量的影响提供了技
术基础。  相似文献   

15.
利用离子束、亚硝基胍及离子束-亚硝基胍诱变法处理蛹虫草Cordyceps militaris JN168,初步获得了几株较高产虫草素的菌株。通过进一步筛选得到复合诱变菌2,并对该菌的液态发酵培养基组分进行了优化。实验结果表明:蛹虫草液态发酵产虫草素的最佳培养基组分为(g/L),葡萄糖40,酵母浸粉25,Mg SO4·7H2O 0.6,K2HPO4·3H2O 0.6,KH2PO40.6。优化后虫草素产量提高了5倍,最高达1 045.65 mg/L。  相似文献   

16.
将五味子药渣用作蛹虫草菌发酵培养基且不添加其他任何营养物质,并以水料比、基质重量、接种量、发酵温度为考察因子,在单因素实验基础上,结合响应面法以发酵产物中虫草素含量为响应值对发酵条件进行优化。响应面法分析得出蛹虫草菌发酵五味子药渣最佳条件:水料比为2mL/g,基质重量为37g,接种量为23%,发酵温度为26℃。在此条件下发酵15d,发酵产物中虫草素含量高达5.1202mg/g;多糖含量为2.87%,相比发酵前五味子药渣中多糖含量提高了24.97%。结果说明,以五味子药渣作为蛹虫草菌发酵培养基,不仅可以提高五味子药渣的利用价值,而且可以降低发酵蛹虫草菌生产虫草素的成本。  相似文献   

17.
响应面法优化蛹虫草菌丝液体发酵产虫草素培养基   总被引:1,自引:0,他引:1  
探究利用响应面法优化蛹虫草液体发酵产虫草素的条件,以提高虫草素积累量。以虫草素积累量为指标,同时测定对应的菌丝体产率,利用Plackett-Burman实验筛选影响虫草素积累量的关键因素,再以最陡爬坡实验逼近最大虫草素积累量响应区域,最后应用Box-Behnken方法优化培养基;对虫草素积累量和对应的菌丝体产率数据进行相关性分析。结果表明:在25℃,无光照,160 r/min,p H自然,5 m L/100 m L接种量,优化培养基为:KNO_30.04 g/100 m L,酵母浸膏1.50 g/100 m L,Fe SO_4·7H_2O 0.03 g/100 m L,KH_2PO_40.2 g/100 m L,葡萄糖3.82 g/100 m L,Zn SO_4·7H_2O 0.06 g/100 m L,Mg SO_4·7H_2O 0.13 g/100 m L,维生素B_10.08 g/100 m,虫草素积累量达到852.621μg/m L;在同等条件下,利用优化培养基发酵8 d+静置10 d后,虫草素积累量达到936.225μg/m L。在本实验多组分的条件下,菌丝体产率小于0.857 g/100m L时,虫草素生成的效率较高,而菌丝体产率大于1.703 g/100 m L时,虫草素积累量开始下降;发酵第8 d虫草素积累量和菌丝体产率存在极显著相关关系。  相似文献   

18.
蛹虫草是名贵中药材之一,本课题组发现其液体发酵物中含有较强的纤溶活性物质,具有开发成溶栓药物的潜力.以本实验室已优化的蛹虫草深层培养产纤溶酶的培养条件为基础,对蛹虫草深层培养产纤溶酶的条件进一步优化,并对其深层培养产纤溶酶过程从摇瓶条件到10L发酵罐进行比拟放大.实验结果表明:蛹虫草深层培养产纤溶酶的最适培养条件为蔗糖2%、豆饼5%,250mL三角瓶装液量为50mL,23℃培养5d,培养基初始pH为自然(6.0左右),接菌量为直径1cm菌片一片(每50mL)或深层培养3~5d的液体菌种0.5%(V/V);10L发酵罐在搅拌转速和通风量为100r/min,600L/h的条件下纤溶酶活力达286.21U/mL(尿激酶单位),较摇瓶条件下的酶活力提高了3.2倍,纤溶酶对菌丝生物量的得率较摇瓶条件下提高了5.5倍.  相似文献   

19.
为了提升面酱的营养价值,丰富面酱品种,改良传统发酵工艺,酿造出蛹虫草特色面酱,在面酱生产工艺的不同环节添加蛹虫草子实体,通过测定发酵过程中氨基酸态氮、还原糖、总酸和虫草素含量的变化,结果表明,蒸料前添加10%的蛹虫草,再经制曲和发酵所制得的蛹虫草面酱中各指标含量均高于传统发酵面酱。在此最佳工艺条件下,蛹虫草面酱中氨基酸态氮含量为0.91 g/100 g,还原糖含量为22.22 g/100 g,总酸含量为1.31 g/100 g,虫草素含量为344.04 μg/g。  相似文献   

20.
蛹虫草液态发酵过程中有效成分的动态积累变化   总被引:2,自引:0,他引:2  
通过对蛹虫草4号菌株进行摇瓶液态发酵培养,考察了蛹虫草发酵过程中发酵液及菌丝体生物量、虫草多糖、虫草酸及虫草素含量的动态积累变化情况。结果表明:70%以上的虫草多糖、虫草酸、虫草素分布在发酵液中。蛹虫草菌在第10天生物转化量达到最大值20.44 mg/mL,虫草酸、虫草多糖、虫草素含量分别在第11、13、14天达到最大值,综合考虑3种产物的最佳发酵周期,将蛹虫草发酵时间定为12 d。10 L发酵罐深层培养试验的结果表明,生物量达24.5 mg/mL,比摇瓶培养提高19.86%,而虫草酸、虫草多糖、虫草素含量分别为7.43、2.82、90.73μg/mL,比摇瓶培养分别提高8.3%、13.7%和15.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号