首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT:  This study examined the effect of adding common carp sarcoplasmic proteins (Sp- P) on the gel characteristics of threadfin bream surimi and kamaboko while maintaining constant moisture and myofibrillar levels. Based on the temperature sweep test, which is involved in heating of surimi gel from 10 to 80 °C to monitor the viscoelastic properties, at temperature range of 40 to 50 °C, the decrease level (depth of valley) in storage modulus (G') thermograph was in proportion to the concentration of added Sp- P. Storage modulus (G') showed greater elasticity after adding Sp- P compared with the control without Sp- P. Furthermore, the breaking force and distance and consequently gel strength of the resultant kamaboko were improved significantly ( P > 0.05). Thus, added Sp- P did not interfere with myofibrillar proteins during sol–gel transition phase but associated with textural quality enhancement of resultant kamaboko; however, addition of Sp- P from the dark muscle of the carp decreased the whiteness of the resultant surimi. Furthermore, according to the SEM micrographs, the gel strength could not be associated with either the number of polygonal structures/mm2 or the area of the polygonal structures in the kamaboko gel microstructure.  相似文献   

2.
BACKGROUND: Endogenous proteases, among them cysteine‐type proteases, are reported to contribute to gel disintegration, resulting in kamaboko of poor quality. Severe gel disintegration occurs in red bulleye surimi gel paste. The objective of this study was to clarify the participation of cysteine protease cathepsin L in the gel disintegration of red bulleye surimi. The surimi was made into kamaboko with and without cathepsin L inhibitors. To confirm its hydrolysis action, crude cathepsin L was also extracted and added to the surimi to make kamaboko. RESULTS: The gel strength of kamaboko obtained by both one‐step (50 °C, 2 h) and two‐step (50 °C, 2 h + 80 °C, 20 min) heating was very low in the absence of inhibitors. Protease inhibitors E‐64 and leupeptin were found to enhance the gel strength considerably. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the hydrolysis of kamaboko was promoted by crude cathepsin L and inhibited by E‐64 and leupeptin. The gel strength of two‐step heated kamaboko was increased from 12 to 110 and 130 g cm?2 by E‐64 and leupeptin respectively at a concentration of 0.2 g kg?1 surimi. CONCLUSION: Endogenous cathepsin L of red bulleye surimi participates in gel disintegration during kamaboko processing. It does so by degrading the myosin heavy chain of actomyosin and consequently hindering the gelation of red bulleye surimi. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
The biochemical and gel properties of tilapia surimi prepared by a conventional washing method and protein isolated using alkaline-acid-aided processes were studied. Solubility and recovery of protein was found to be highest by using a conventional method, followed by an alkaline- and acid-aided process, respectively. Decreases in myoglobin and lipid contents were found in alkaline- or acid-aided process when compared to the conventional process (p < 0.05). The highest breaking force and deformation of kamaboko and modori gels was found in the gels prepared by the conventional washing method. Higher expressible water and whiteness were found in modori gels when compared to kamaboko gels. TCA-soluble peptide contents of conventional surimi gels were lower than those of acid- and alkaline-recovered protein gels. Degradation of myofibrillar protein was observed in acid-isolated protein. Microstructure of kamaboko gels showed more compact network than in modori gels in both conventional surimi and protein recovered using the pH-shift process.  相似文献   

4.
Proteolysis of a myofibril-bound serine proteinase (MBP) from carp Cyprinus carpio on myofibrillar proteins and their gel formation ability were investigated. MBP readily decomposed myosin heavy chain as indicated by SDS-PAGE. In the preparation of kamaboko, the gel formation ability was diminished by addition of MBP. The optimum degradation temperatures of MBP to myosin heavy chain in myofibril and kamaboko gel were 55°C and 60°C, respectively. The degradation effects of MBP on actin, α-actinin and tropomyosin were studied by the immunoblotting method. Because of its myofibril-bound and myofibrillar protein degradation characteristics, MBP was regarded as the proteinase most probably involved in the modori effect.  相似文献   

5.
ABSTRACT: The demand for surimi and kamaboko is increasing in the world at the same time as the supply of the fish traditionally used has declined. In an effort to increase the range and hence supply of fish used, factors increasing the quality of surimi and kamaboko from common carp were investigated. The best surimi and kamaboko characteristics were produced by a modified conventional method (MCM) rather than traditional method (TM), alkaline‐aided method (AAM), and pH modified method (PMM). MCM processing used centrifugation instead of decanting and filtering to optimize dewatering and remove the sarcoplasmic proteins (Sp‐P). The temperature sweep test, at the end of sol–gel transition stage (at 75 °C), showed significantly (P < 0.05) greater G′ for the kamaboko from MCM than that from other methods tested. Furthermore, the greatest and the least gel strengths were obtained with MCM and TM kamaboko, respectively. The protein recovery was about 67%, 74%, 87%, and 92% for TM, AAM, MCM, and PMM, respectively. TM and MCM resulted in the removal of Sp‐P as determined by SDS‐PAGE. The superiority of MCM kamaboko gel characteristics was supported by scanning electron micrographs (SEM) of the gel, which showed a significantly (P < 0.05) greater number of polygonal structures than for the TM kamaboko, which had the fewest and largest polygonal structures. The pH‐shifting methods improved the textural quality of the resultant kamaboko compared with TM. However, a simple modification (centrifugation compared with decanting) by MCM in the surimi process can further improve the quality of the surimi and kamaboko gels. Furthermore, because it removed Sp‐P and still preserved gel strength, it suggests that Sp‐P are not required for gel strength.  相似文献   

6.
Protein Structural Changes During Preparation and Storage of Surimi   总被引:1,自引:0,他引:1  
The changes in protein structure associated with the preparation and frozen storage of surimi were investigated. Raw surimi was prepared by repeatedly washing Alaska pollock flesh with chilled water. The product was either slowly frozen or underwent rapid freezing using liquid air; in either case it was then subjected to frozen storage at ‐20 °C for 24 mo. Fourier transform infrared/attenuated total reflectance (FTIR/ATR) spectroscopy showed that during preparation of surimi, the a‐helix content increased with increased number of washing cycles. Differential scanning calorimetry (DSC) revealed a shift in the thermal transition of actin to a higher temperature during surimi preparation. Electrophoresis, FTIR/ATR spectroscopy, and DSC results revealed a loss of myofibrillar proteins from surimi after 3 washing cycles, suggesting that 3 washing cycles were adequate to prepare surimi. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) showed relatively minor changes in protein subunit structure with some loss of the myosin light chains (MLC); myosin heavy chain (MHC), actin, and tropomyosin were found to be relatively stable. Native‐PAGE showed no major changes in surimi after 24 mo storage at ‐20 °C. FTIR/ ATR spectroscopy indicated a significant decrease in a‐helix relative to p‐sheet structure in surimi after 2 y of storage at ‐20 °C. The loss of α‐helical content was more significant in slowly frozen surimi compared with rapid‐frozen surimi samples. DSC results revealed a shift in the thermal transition of actin to lower temperatures during frozen storage of surimi.  相似文献   

7.
鱼糜制品(鱼丸、鱼糕、蟹肉棒等)因为其健康营养、方便快捷等特点而深受消费者欢迎,具有广阔的市场前景。鱼糜制品是基于鱼糜肌原纤维蛋白的胶凝性能所形成的弹性凝胶体,其加工工序包括斩拌、加热、添加外源物等。因此,鱼糜肌原纤维蛋白在典型加工条件下发生结构以及功能特性的变化会影响鱼糜制品的品质。本文主要综述了鱼糜肌原纤维蛋白在物理场(加热、斩拌)、化学场(pH值、离子强度)、生物场(酶、微生物)等典型加工条件下的结构及功能特性变化规律及调控方法,以期为进一步发展鱼糜制品加工业提供理论依据。  相似文献   

8.
分别从肌原纤维蛋白分子结构和凝胶特性角度,探究不同质量分数鱼鳞明胶(0.5%、1%、2%)的添加对冻融处理鱼糜的冷冻保护作用。结果表明:添加1%明胶时,肌原纤维蛋白在8 次冻融后其蛋白溶解度、总巯基含量和Ca2+-ATP酶活性的下降幅度分别为49.2%、17.4%和31.2%,均低于对照组的下降幅度(69.8%、26.6%和49.4%);表面疏水性和羰基含量的抑制程度分别为42.7%和229.9%,高于商业抗冻剂组(159.4%)。同时鱼鳞明胶的添加明显抑制了鱼糜冻融过程流变学特性和凝胶特性的劣化。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳图谱结合差示扫描量热分析结果表明,除通过抑制冰晶生长以外,明胶亦可通过与鱼糜肌原纤维蛋白侧链间的疏水相互作用,抑制肌原纤维蛋白降解,实现冰晶抑制与组分稳定的双重低温保护作用。  相似文献   

9.
为阐明棒状乳杆菌(Lactobacillus coryniformis)Lz153发酵秘鲁鱿鱼糜的凝胶形成机理,通过质构仪测定棒状乳杆菌Lz153发酵秘鲁鱿鱼糜凝胶特性,分析凝胶形成过程中离子键、氢键、疏水相互作用、二硫键及非二硫共价键的变化,并利用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis,SDS-PAGE)方法观察肌原纤维蛋白变化情况。结果表明,棒状乳杆菌Lz153鱿鱼糜发酵24~36?h阶段凝胶特性最佳;离子键含量在发酵过程中呈逐渐减少趋势,氢键和疏水相互作用含量分别在发酵36?h和30?h达到最大值,二硫键和非二硫共价键含量随发酵时间延长而呈增加的趋势;氢键、疏水相互作用、二硫键和非二硫共价键是形成和维持凝胶网络的主要作用力。SDS-PAGE图谱显示,发酵后肌动蛋白和肌球蛋白重链均开始被降解,同时经发酵24?h后分子质量在100~135?kDa范围出现了新的盐溶性蛋白质条带,发酵至48?h也被降解。研究结果可为开发秘鲁鱿鱼为原料的乳酸菌发酵鱼糜制品加工提供参考依据。  相似文献   

10.
Two different mixtures (Alaska pollock surimi with grass carp fish protein isolate (FPI) and grass carp surimi with grass carp FPI) were investigated for their compatibility and functionalities. As the proportion of FPI increased, it was observed surface hydrophobicity and surface reactive sulfhydryl (SRSH) content increased significantly, indicating the degree of fish protein unfolding prior to gelation was much higher than surimi alone. Comparable results were shown as measured by storage modulus (G′) in oscillatory dynamic rheology, demonstrating the gelling temperature was reduced when the proportion of FPI increased. Effects of mixing surimi and FPI on gel functionality (hardness, cohesiveness, and whiteness) exhibited a linear pattern when the proportion of surimi was larger than or equal to that of FPI. However, there were no linear relationships when the proportion of FPI exceeded that of surimi.

Practical applications

Commercial surimi has been successfully used in the Western world over 30 years. Unlike surimi which is a refined fish myofibrillar protein composite, fish protein isolate (FPI) is a refined composite of myofibrillar protein and sarcoplasmic protein. The former is made by avoiding any chemical/physical denaturation, while the latter can be made by inducing chemical denaturation and renaturation with pH shift. Even though FPI is not currently available in a commercial scale, it has a great potential to replace all or a part of surimi for the manufacture of fish protein gel products. This study reveals how to optimally mixed these two differently refined fish proteins based on their functional properties. The results suggested that blending surimi and FPI may be feasible only when the proportion of FPI does not exceed 50%.  相似文献   

11.
Effects of setting temperature, time, and addition of porcine plasma protein (PPP) on gel properties of surimi from bigeye snapper (Priacanthus tayenus) were investigated. Breaking force and deformation of the surimi gels increased as the setting time and temperature increased. The gel preincubated at 35C for 90 min in the presence of 0.5% PPP, followed by cooking at 90C for 20 min showed the maximum force and deformation. The decrease in solubility of the resultant suwari and kamaboko gels in solution containing sodium dodecyl sulfate, urea and β‐mercaptoethanol suggested that gel enhancement was mainly mediated through the formation of nondisulfide covalent bonds catalyzed by both transglutaminase (TGase) in fish muscle and porcine plasma. Addition of PPP slightly decreased the whiteness of the kamaboko gels.  相似文献   

12.
The quality of surimi made from fish aged on ice for up to 14 days was evaluated by compression test on a model product. Water holding capacity (WHC) and pH in the fish mince, and protein content, pH, salt solubility of the myofibrillar proteins and hydration index of the insoluble proteins (HUP) in the surimi, were determined. Their interrelationships and utility as indicators of surimi quality were evaluated by a multivariate data analysis. The main tendencies of variation among the chemical parameters were examined by the use of principal component analysis. Correlations between the chemical parameters (X-variables) and the gel strength of surimis (Y-variable) were studied by the use of partial least squares regression. Age of the raw material and protein content of the surimi seemed to be the main determinants of the gel strength. Among the remaining variables only HIIP showed a potential value as indicator of the gel strength. WHC and HIIP seemed to reflect two different water retention properties of the proteins.  相似文献   

13.
To apply ɛ-polylysine (PL) as a natural food preservative for the preparation of surimi products, effects of added PL on the textural properties and shelf-life of kamaboko gels were investigated. Kamaboko gels were prepared by setting at 30C for 1 h, then heating at 80C for 20 min. Breaking force and breaking strain of kamaboko gels increased slightly with increasing PL concentration up to 0.2% and decreased at 0.4%. However, the protein subunit component composition of kamaboko gels did not vary with the amount of PL added, indicating that PL did not promote the polymerization of myosin heavy chain. The increased pH value of surimi to around 7.6 as the result of the incorporation of 0.2% PL was found to be attributable to the increased textural properties of kamaboko gels. The shelf-life of kamaboko gels was significantly extended by the addition of 0.2% PL in surimi, especially at 5C and 10C storage.  相似文献   

14.
The paper examines the effect of High Pressure Processing (HPP) (300 MPa), the incorporation of microbial transglutaminase (MTGase) and the addition of different additives such as lysine and cystine, as potential enhancers of low-salt (0.3%) surimi gel. Effects on myosin as the molecule responsible for gelation was monitored by Fourier transform infrared spectroscopy, Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and dynamic rheometry measurements. The effects on physicochemical properties of surimi gels were determined by Folding and Puncture tests and water holding capacity.Results indicated an increase in β-sheet when HPP was applied or additives added (cystine and lysine), especially when samples are treated with MTGase. Protein aggregation due to HPP and the additives resulted in lower myosin heavy chain (MHC) band density in the SDS–PAGE. Rheometry measurements indicated that MTGase activity was prompted by the incorporation of cystine and lysine in the absence of HPP. Also, HPP assisted gelation, resulting in improved mechanical properties of the gels. Samples containing additives, with or without HPP, exhibited the highest Folding test scores, indicating greater network flexibility. Lastly, water binding capacity was also enhanced by both additives and HPP.Industrial relevanceThe industrial relevance of the present work is focused on the appropriated gelation of myofibrillar proteins which is an essential step in the elaboration of surimi-based products. Sodium chloride has an important role in that fact inducing protein unfolding and solubilization. The reduction in NaCl content, following the NAOS strategy, required the application of different technologies to facilitate surimi adequate gelation. High-pressure processing has been commonly used as an innovative technology to prolong shelf life but it can be successfully used to induce proteins gelation. Due to that ability, the use of high pressure on surimi-based products result an interesting tool to facilitate surimi gelation. The use of Microbial transglutaminase (MTGase) alone or in combination with some aminoacids such as lysine and cystine can significantly improve surimi gelation added in a very small proportion.  相似文献   

15.
安玥琦  熊善柏 《食品科学》2015,36(7):235-239
转谷氨酰胺酶可以催化肌原纤维蛋白发生交联反应。随着交联程度的增加,鱼糜凝胶从弹黏体变为弹脆体,风味也随之改变。风味物质的扩散、释放与凝胶网络的交联程度密切相关,因此深入了解交联程度与食品品质的关系及风味物质在凝胶网络中的扩散行为显得尤为重要。本文总结转谷氨酰胺酶催化肌原纤维蛋白的交联机理,归纳了国内外对肌原纤维蛋白交联程郭彩霞度的测定方法与影响因素,探讨交联程度对鱼糜蛋白的凝胶特性与风味释放的影响,并对今后的研究方向提出思考与展望。  相似文献   

16.
海藻糖对罗非鱼糜及蛋白抗冻作用的研究   总被引:4,自引:0,他引:4  
以罗非鱼为原料,提取肌原纤维蛋白,添加10%海藻糖。在不同的冷冻时间下对其蛋白盐溶性,ATPase活性及巯基含量为指标,与未添加海藻糖对比研究肌原纤维蛋白的变性程度。制作罗非鱼糜,添加10%海藻糖作为对比,与蛋白变性过程同步,研究鱼糜的凝胶强度、保水性、弹性、咀嚼性等指标。结果表明,随着冻藏时间的延长,鱼糜蛋白盐溶性ATPase活性及巯基含量均呈下降趋势,鱼糜的保水性、弹性凝胶强度等也同步下降。而添加海藻糖对该趋势有抑制作用。  相似文献   

17.
Heat-induced gelation of myofibrillar proteins and myosin (0.6M; pH 6.0) from rabbit fast- and slow-twitch muscles was analyzed by thermal scanning rheometry. Proteins from slow-twitch muscle exhibited higher thermostability and lower gel strength than those from fast-twitch muscle. Purifying myosin from myofibrillar proteins changed heat-gelation profiles and generally increased gel rigidity at 80°C. However, the effect of some proteins on the gelation of myosin was muscle dependent. Complete elimination of actin decreased the heat-gelling ability of slow myosin and increased that of fast myosin. Also, elimination of C-protein led to a greater increase in rigidity of gels from slow myosin than from fast myosin. The heat-behavior of the different protein fractions was related to the degree and type of aggregation in the gel.  相似文献   

18.
为研究低温冷链对鱼糜肌原纤维蛋白和凝胶化学作用力的影响。本实验以鱼糜为研究对象,测定了低温冷链贮藏时间对肌原纤维蛋白功能基团、二级结构、三级结构和凝胶化学作用力的影响,并进一步通过主成分分析和相关性分析探究凝胶化学作用力与肌原纤维蛋白之间的关系。结果表明,贮藏过程中鱼糜盐溶性蛋白含量、Ca2+-ATPase活力和总巯基含量呈下降趋势,而羰基含量上升。此外,蛋白质二级结构由有序向无序转变,肌原纤维蛋白荧光强度下降,说明蛋白极性环境发生改变。揭示了肌原纤维蛋白中的活性基团与凝胶化学作用力的形成密切相关。因此,在贮藏初期防止蛋白氧化和冷冻变性是维持鱼糜凝胶化学作用力,保持鱼糜凝胶特性的有效途径。本研究可为鱼糜在低温冷链贮藏过程中的品质保持提供基础理论支持。  相似文献   

19.
This study investigated the effects of different NaCl substitutes on the gel properties, physicochemical properties, and sensory attributes of shrimp surimi gel to produce high-quality reduced-salt shrimp surimi gel. The results showed that CaCl2, calcium ascorbate (Vc-Ca), and L-arginine (L-Arg) could significantly improve the gel strength and texture of shrimp surimi gel compared to NaCl. The addition of CaCl2, Vc-Ca, and L-Arg significantly increased the number of disulphide bonds and the content of β-sheet structures compared to NaCl. The electrophoretic analysis revealed that CaCl2, Vc-Ca, and L-Arg had protective effects on the myosin heavy chain during thermal gelation. Additionally, CaCl2 and L-Arg promoted the cross-linking of myofibrillar proteins to form the denser and less porous microstructures, and thus improved the gel properties of shrimp surimi gel. In general, the introduction of L-Arg as a substitute for NaCl acquired the best gel properties and sensory attributes of shrimp surimi gels, followed by CaCl2 and Vc-Ca.  相似文献   

20.
鱼糜制品是一类以鱼糜为原料,经擂溃、成型、凝胶化等过程制成的凝胶状食品。凝胶特性是评价鱼糜品质的重要指标,它直接关系到鱼糜制品的持水性、弹性、黏结性等组织特性。蛋白质是生产过程中常用的一种外源物,其添加可以增强鱼糜制品的品质,降低生产成本。在阐述肌原纤维蛋白的分子组成和凝胶机制的基础上,介绍肌肉蛋白和非肌肉蛋白(酶类蛋白、植物性蛋白和动物蛋白)在鱼糜制品中的应用现状及发展趋势,旨在为各种蛋白质类物质作为鱼糜凝胶增强剂提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号