首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
试验以ACE抑制率为指标,通过单因素和正交试验确定酶解法制备葵花籽粕ACE抑制肽的最优工艺。结果表明:碱性蛋白酶制备葵花籽粕ACE抑制肽的最佳工艺为:溶液p H 8,加酶量7%,水浴温度55℃,酶解时间2 h。葵花籽粕ACE抑制率为85.49%±0.80%。  相似文献   

2.
比较6种大孔树脂对苋籽ACE抑制肽的吸附-解吸效果,从中筛选出合适该活性肽分离纯化的树脂,并对其吸附-解吸工艺进行优化.结果表明,DA201-C树脂最适合苋籽ACE抑制肽的纯化,在样品质量浓度10mg/mL,pH为5,上样量1BV,流速6mL/min时,树脂的吸附效果最佳,吸附率达83.69%,再用5BV体积分数75%乙醇,以5mL/min的流速进行洗脱,此时几乎把吸附的多肽全部洗脱下来,解吸率为98.69%.经树脂纯化,样品的蛋白纯度为89.47%,脱盐率为88.86%,短肽含量提高了20.96%,ACE抑制活性提高了27.91%.  相似文献   

3.
《粮食与油脂》2017,(10):93-96
采用大孔吸附树脂对魔芋ACE抑制肽进行分离,比较3种大孔吸附树脂对魔芋飞粉中ACE抑制肽的静态吸附和解吸效果,从中筛选出适合该魔芋ACE抑制肽分离纯化的树脂。结果表明,DA201-C型树脂最适合魔芋飞粉中ACE抑制肽的纯化。通过对影响树脂吸附解吸的各种因素进行系统地研究,确定工艺参数。最佳工艺参数为上样浓度8 mg/mL、pH 2.0、上样量8 mL、洗脱液乙醇体积分数80%、洗脱流速1.0 mL/min、洗脱时间2 h,在此条件下,分离得到的魔芋ACE抑制肽的抑制率为95.19%。  相似文献   

4.
以提取绿原酸后的葵花籽粕为原料,在单因素试验的基础上,采用L9(34)正交优化试验确定葵花籽粕蛋白最佳制备工艺。采用蛋白层析仪分离纯化葵花籽粕蛋白,确定了纯化工艺,同时以大豆蛋白为对照,研究了葵花籽粕蛋白的溶解性、起泡性与起泡稳定性、乳化性与乳化稳定性、持水性、持油性等功能性质。结果表明,葵花籽粕粗蛋白最佳碱提工艺为料液比1∶25(g/m L)、温度40℃、时间30 min、碱液p H 12.0,提取率为61.04%±2.5%,蛋白质含量为66.94%±3.2%;分离纯化的工艺条件为上样量3.0 m L、洗脱液流速0.4 m L/min,纯化后蛋白质含量为93.20%±3.5%,纯度提高了26.36%±1.6%;葵花籽粕蛋白的等电点PI为4.2;葵花籽粕蛋白的溶解性,起泡性、起泡稳定性、乳化性、乳化稳定性均略高于大豆蛋白,持水性略低于大豆蛋白,持油性明显高于大豆蛋白。葵花籽粕蛋白有望作为食品工业的风味保持剂。  相似文献   

5.
《粮食与油脂》2016,(1):75-77
研究了葵花籽ACE抑制肽在热处理下抑制率和多肽溶液颜色(b*值)变化,以及在模拟胃肠液中的稳定性。实验结果表明:葵花籽ACE抑制肽的稳定性对热和酸碱度很敏感,仅当p H4.0,加热温度≤40℃,加热时间2.0 h时,ACE抑制活性才能很好的保持;然而在模拟胃肠液中葵花籽ACE抑制肽的活性比较稳定,不但不会损失反而略微有所上升。  相似文献   

6.
《食品与发酵工业》2017,(6):163-168
利用碱溶酸沉法从魔芋飞粉中提取魔芋蛋白,以魔芋蛋白为原料,利用碱性蛋白酶酶解制备魔芋ACE抑制肽粗品;其粗品通过超滤法除去大分子杂质,再经过Sephadex G-15柱层析分离,最后经过RP-HPLC纯化后得到纯度较高的魔芋ACE抑制肽,并且对超滤膜进行选择、Sephadex G-15柱层析分离进行条件优化;以马尿酸含量为指标,紫外分光光度法测其活性。实验结果表明:选择规格为1 kDa超滤膜;Sephadex G-15最佳分离条件为浓度为120 mg/mL、流速为0.8 mL/min、上样量为1.0 mL;经过RP-HPLC纯化后得到魔芋ACE抑制肽抑制率可达到92.85%。空白液中Hip含量为22.50 mg,反应液中Hip含量为9.22 mg,说明魔芋ACE抑制肽抑制活性较好。  相似文献   

7.
血管紧张素转换酶(ACE)的活性过高是导致高血压的重要因素之一。ACE抑制肽可有效地抑制ACE的活性。为了制备高纯度的ACE抑制肽,考查不同截留分子量超滤膜对发酵羊乳中的ACE抑制肽的分离效果,比较4种树脂(AB-8、HPD-100、DA201-C、DM130)对ACE抑制肽的纯化效果,选择最佳树脂并对其纯化工艺参数进行优化。结果表明,经超滤分离后,ACE抑制肽主要集中在M1 ku组分中,其IC50值降到了0.348 mg/mL,ACE抑制率为86.91%,比超滤前ACE抑制率提高了5.61%;大孔树脂DA201-C最佳,静态吸附最佳工艺条件为上样pH2.15、上样浓度20 mg/mL、吸附率为(72.38±1.26)%,通过大孔树脂后IC_(50)值达到0.301 mg/mL,与超滤液相比IC50降低了0.047 mg/mL。  相似文献   

8.
以吸附率和解吸率为评价指标,对大孔树脂分离纯化文冠果壳总黄酮的工艺进行优化,并研究纯化后文冠果壳总黄酮的稳定性。结果表明,文冠果壳总黄酮的最佳分离纯化工艺为:采用XAD-1600树脂,上样液pH=4,上样浓度0.5mg/mL,吸附时间6h,上样流速2BV/h,洗脱液流速3BV/h,洗脱液乙醇浓度40%。该条件下,纯化后总黄酮的纯度为(70.15±1.03)%,回收率为(89.63±1.58)%。稳定性试验表明:文冠果壳总黄酮在低温、酸性、避光条件下性质稳定。  相似文献   

9.
以牡丹籽粕为原料,用酶解法制备ACE抑制肽及其稳定性研究。以血管紧张素转化酶(angiotension converting enzyme,ACE)抑制率为指标,从中性蛋白酶、碱性蛋白酶、胃蛋白酶、胰蛋白酶和风味蛋白酶中筛选出最佳ACE抑制肽制备酶为中性蛋白酶。以单因素实验为基础,进行酶解条件的响应面优化,结果显示牡丹籽ACE抑制肽酶法制备的最优条件为:底物浓度2%,pH7.5,加酶量7200 U/g,酶解温度43℃,酶解时间2 h,此时酶解液ACE抑制率可达到86.93%±2.38%。此外,稳定性分析显示该ACE抑制肽具有良好的温度和酸碱稳定性,在温度20~100℃与pH2~10的环境下,ACE抑制活性没有显著变化(P>0.05),并且经过体外胃肠模拟消化后,ACE抑制活性变化不显著(P>0.05),仍能保持良好的抑制活性。  相似文献   

10.
采用大孔吸附树脂对鸡血藤原花青素进行纯化,并对原花青素纯度、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除活性及α-葡萄糖苷酶抑制活性进行评价。比较3 种大孔吸附树脂对原花青素静态吸附及解吸附能力,从D101、X-5及AB-8树脂筛选出X-5型树脂用于纯化。对X-5型树脂的动态吸附及解吸附条件进行优化,获得最适条件为:上样质量浓度6.00 mg/mL,上样流速2 BV/h,上样量10 BV,洗脱流速1 BV/h,洗脱剂用量2 BV。利用不同体积分数乙醇洗脱可得到不同纯度的原花青素,其中70%乙醇纯化物原花青素纯度最高,具有最强的DPPH自由基清除活性及α-葡萄糖苷酶抑制活性。相关性分析表明原花青素可能是鸡血藤抗氧化及抑制α-葡萄糖苷酶的主要活性成分。  相似文献   

11.
为制备红花籽粕抗氧化活性肽,比较不同酶解工艺下产物的抗氧化性,研究AB-8大孔树脂分离工艺,对比分离前后多肽抗氧化性,结果表明:碱性蛋白酶Alcalase酶解产物抗氧化性最佳,测得还原力为1.755,DPPH自由基清除率39.84%,羟自由基清除率26.76%、超氧阴离子自由基清除率25.90%,多肽含量达到10.71 mg/mL;选择AB-8树脂分离,采用上样流速3 BV/h、上样量24 mL、80%乙醇洗脱、洗脱流速1.00 mL/min工艺分离,且AB-8分离后样品的DPPH自由基清除率、羟自由基清除率、超氧阴离子自由基清除率均有增强。  相似文献   

12.
为了利用较为优质的植物性蛋白葵花籽粕蛋白质,在微波酶解条件下,运用单因素确定了葵花籽粕抗氧化多肽液的最适脱盐条件为:酶解液pH4.5、阴阳离子树脂比例3:2、过柱速度8倍柱/h。在此条件下,脱盐率为84.54%、·OH和O2-·的清除率分别为43.62%和57.08%。最适超滤条件为:超滤压力0.16 MPa、液体流速2.5 mL/s、超滤时间60 min。在此条件下,渗透通量为25.98 L/m2·h、膜污染度为0.021、·OH和O2-·的清除率分别为73.02%和86.58%。通过对葵花籽粕蛋白酶解液进行了深入的研究,为葵花籽粕多肽产品的开发和工业化批量生产功能性生物活性肽产品提供了理论依据。  相似文献   

13.
血管紧张素转换酶(Angiotensin-I Converting Enzyme,ACE)在血压调节中扮演重要角色,抑制其活性有利于维持血压平衡。食源性ACE抑制肽具有安全、易吸收的特点,受到广泛关注。本研究旨在从茶渣蛋白中获得一种具有高ACE抑制活性的新肽。以ACE抑制率为指标,通过对三种超声方式的比较,确定最佳超声方式;以单因素实验为基础,进行响应面优化确定最佳超声波预处理参数;酶解液分离纯化运用超滤的方法,并对截留分子量小于3 kDa组分进行稳定性分析。结果表明,超声波预处理为最佳处理方式,得最优条件为超声功率300 W、超声温度45 ℃、超声时间25 min。在最佳超声波预处理条件下,ACE抑制率为64.8%,相比于未超声组54.1%提高了10.7%;当截留分子量小于3 kDa时,ACE抑制肽的抑制率为82.3%,相比于原始酶解液提高了17.5%。当温度30 ℃升温至90 ℃,ACE抑制肽的抑制率从82.3%降低至78.3%,减少了4.3%;酸碱度、盐溶液变化其对ACE抑制率表现稳定;模拟消化环境中8 h后,ACE抑制率从82.3%降为62.3%。  相似文献   

14.
本文主要从分子极性角度研究了大孔吸附树脂对具有血管紧张素转化酶(Angiotensin-I converting enzyme,ACE)抑制活性的海蜇多肽的分离纯化作用.取海蜇酶解产物作为研究对象,选用HP20SS、SP20SS、SP207三种不同型号的大孔吸附树脂分离纯化海蜇ACE抑制肽,以ACE抑制率为评价指标,对...  相似文献   

15.
本文开发了一种利用枯草芽孢杆菌(Bacillus subtilis)发酵大豆豆粕并结合多级超滤、纳滤配合凝胶渗透色谱(GFC)和液相色谱(HPLC)分离纯化具有血管紧张素转换酶(ACE)抑制活性的小肽的方法。利用色谱法从发酵豆粕超滤提取液中分离纯化大豆小肽,用氨基酸序列分析仪PPSQ-21和基质辅助激光解吸/电离串联飞行时间质谱基质(MALDI-TOF-TOF/MS)定性,再用标准固相肽合成法(SPPS)合成小肽,用HPLC法测定其ACE 抑制活性,并对小肽进行Sprague-Dawley Rat大鼠的心血管离体实验。结果表明,超滤后得到不同分子量滤液F1(1000~10000 Da)、F2(500~1000 Da)、F3(<500 Da)均具有不同程度的ACE 抑制活性且分子量最小的F3(<500 Da)组分最强。从F3组分中分离纯化了两个ACE 抑制活性小肽,HAGR和CGAAP,在相同浓度(2 mg/mL)下其抑制率分别为34.99%和77.79%,后者抑制活性高于F3组分。离体实验的结论同样证实,大豆提取小肽具有舒张已被收缩的血管环的活性,但活性强度与ACE抑制活性不直接相关。实验证明,枯草芽孢杆菌配合超滤的方式可以从大豆发酵物中制备具有血管生物活性的组分,其生物活性可能来源于这种组分中的部分小肽。  相似文献   

16.
核桃蛋白ACE抑制肽分离纯化研究   总被引:1,自引:1,他引:0  
核桃ACE抑制肽经超滤后,其ACE抑制率由76.58%增至78.43%,再经DA201-C大孔吸附树脂脱盐纯化后,脱盐率达到98.70%,ACE抑制率升高至80.73%;采用Sephadex G-15凝胶分离后,核桃ACE抑制肽被分为三个组分,其中活性最大的G2组分,其ACE抑制率达83.10%,且IC50为1.308 mg/mL,G2组分主要分布在500 Da180 Da,系为2180 Da,系为24个氨基酸残基组成小肽。  相似文献   

17.
王双  王昌涛  韩扬 《食品科学》2010,31(24):222-229
通过对3 种大孔吸附树脂的比较,选择DA201-C 树脂对燕麦ACE 抑制肽进行纯化。纯化后的燕麦肽产物的ACE 抑制率达到92.86%,利用HPLC 测得纯化后燕麦ACE 抑制肽的分子质量分布在240.10~1292.11D 之间,这部分物质在整个纯化产物中占99.82%。采用SephadexG-15 凝胶分离燕麦ACE 抑制肽得到D峰,其IC50 为0.103mg/mL,分子质量545D。采用大孔吸附树脂及凝胶层析法能够较好地分离纯化燕麦ACE 抑制肽。  相似文献   

18.
目的:研究云南大理宾川葡萄籽原花青素纯化及对肝癌HepG2细胞增殖的影响.方法:考察了上样液质量浓度、pH、流速、乙醇体积分数等对葡萄籽原花青素吸附及解析的影响,研究AB-8型大孔吸附树脂纯化云南大理宾川葡萄籽原花青素的条件.将纯化过程中乙醇梯度洗脱得到的不同极性葡萄籽原花青素作用于HepG2细胞,采用CCK8法检测不...  相似文献   

19.
以油葵、食葵的葵花籽仁除油后乙醇提取物为研究对象,在测定其提取物中总酚酸含量的基础上,用K3[Fe(CN)6]测定了它们的还原力;采用D-脱氧核糖-铁体系、超氧阴离子自由基体系、二苯代苦味酰基自由基(DPPH.)体系进行抗氧化活性的研究,并同Vc进行了比较。结果表明:油葵、食葵的葵花籽仁粕乙醇提取物均有显著的抗氧化性,呈剂量效应关系,其中葵花籽仁粕乙醇提取物的抗氧化活性与其总酚含量密切相关。当葵花籽仁粕多酚浓度为0.05 mg/mL时,对DPPH.的清除率都超过了95%;当多酚浓度为0.2 mg/mL时,对超氧阴离子自由基的清除率,油葵、食葵分别为57.83%4、5.24%;对.OH的清除率,油葵、食葵分别达到77.61%6、8%;在实验浓度范围内0.005 mg/mL~0.2 mg/mL,葵花籽粕乙醇提取物的抗氧化性高于VC。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号