首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用金相显微镜、扫描和透射电镜等仪器表征了TiAl合金的片层组织及结构特征,研究了Ti-48Al at%合金片层组织的形成机制和片层组织细化工艺及其机理。结果表明,Ti-48Al合金单级热处理能够得到全片层组织,平均晶粒尺寸约150μm,片层间距约1.30μm。其形成过程是:γ相在α相晶内(0001)面上通过全位错分解成核,通过不全位错滑移、层错区扩展而长大。循环热处理和双温热处理均能将片层晶粒尺寸细化到30μm,片层间距0.90μm,前者的细化机理为相变重结晶细化了α相晶粒,后者细化片层组织的关键在于低温段(α2+γ)两相区热处理形成细小的双态组织。  相似文献   

2.
根据热模拟实验结果和动态材料模型建立了Ti-46Al-8Nb合金的热加工图,确定了合理的热加工工艺制度,并采用包套轧制方法制备了Ti Al合金板材,考察了轧制高铌Ti Al合金的组织演变规律及流变软化机制。结果表明,在低应变时加工图中只存在2个失稳区,当应变增加到0.4时,在1250℃、0.006 s~(-1)附近位置也出现了失稳;在1200℃、1 s~(-1)和1150~1200℃、0.01 s~(-1)附近存在典型的动态再结晶区域。最终结合应变速率敏感系数的分析,选择在1150~1200℃、0.01~0.03 s~(-1),每道次变形量约为18%的条件下进行复合包套轧制,获得厚度约为0.85 mm、变形均匀无裂纹缺陷的板材,其热轧组织局域流变软化严重,存在明显的轧制变形带,但整体组织均匀性较好。Ti-46Al-8Nb合金在热轧过程中的流变软化以γ相的动态再结晶以及热-力作用下L(α/γ)层片组织的相变分解为主,其中再结晶过程主要是通过位错塞积诱导亚晶界形成进而完成小角度晶界向大角度晶界的转化,L(α/γ)→γ+α+B2/β和α→γ转变是片层团分解的主要途径。此外,大量普通机械孪晶以及孪晶片层的出现,也可以显著提高热轧Ti Al合金的组织均匀性。  相似文献   

3.
采用分子动力学模拟方法,分别研究了晶粒尺寸和孪晶密度对纳米多晶铝合金塑性变形的影响。模拟结果表明,弛豫后的位错密度对纳米多晶Al的微观结构演变和逆Hall-Petch关系产生了重要影响。变形受晶粒大小限制,在细晶中可形成层错四面体和复杂层错结构,从而激活了晶界的辅助变形。当孪晶界间距(TBS)较大时,Shockley分位错在晶界处形核并增殖。然而,随着TBS的减小,孪晶界成为Shockley分位错的来源。孪晶界上大量的分位错形核会导致孪晶界迁移甚至消失。在塑性变形过程中还观察到形变纳米孪晶。研究结果为开发具有可调节力学性能的先进纳米多晶Al提供了理论基础。  相似文献   

4.
研究了Ti45Al8Nb0.8B0.2C合金的组织及高温氧化行为。XRD、SEM、TEM及EDS分析表明,合金热等静压后的组织为γ和α2相组成的片层组织,片层团晶粒内部与层片团晶界处存在条状或点状白色相TiB2;高温淬火合金发生α→γm相变,在α+γ两相区时效合金组织由不同取向的细小层片和层片交界处的α2相组成。氧化增重实验及XRD、SEM分析表明,合金在900和1000℃氧化100h,氧化反应常数分别为0.00192和0.31637,幂指数分别为1.1381和2.0076。合金在900℃氧化100h后氧化层厚度大约为4μm,从外到内依次为:不连续的Al2O3层/Al2O3+TiO2混合层/富Nb层/基体。合金在1000℃氧化100h后氧化层厚度大约为5μm,从外到内依次为:TiO2/Al2O3+TiO2/氮化物层/基体。  相似文献   

5.
采用SEM和TEM研究了室温(23℃)和中温(650、750、815℃)下第3代镍基粉末高温合金(FGH98)拉伸变形显微组织、行为和机制。结果表明:含有多模尺寸分布γ′相的合金具有优良的拉伸性能,室温拉伸主要变形机制为位错剪切γ′相形成层错,并在γ′相周围形成位错环,阻碍后续位错运动。中温拉伸变形机制为位错剪切γ′相形成层错和形变孪晶,随着变形温度的升高,形变孪晶增多。给出了a/3112不全位错剪切γ′相形成层错和形变孪晶共存的模型,随着应变量的增加,在连续相邻的{111}滑移面上层错堆积变多,促进连续孪晶的形成,协调了γ和γ′相两相之间的变形,有助于释放两相之间的变形应力和提高合金强韧性。  相似文献   

6.
采用BaZrO_3复合型壳定向凝固Ti-46Al-8Nb合金。通过扫描显微镜、金相显微镜和XRD等手段分析了BaZrO_3耐火材料与金属熔体之间的界面情况、熔体通过螺旋选晶器后的晶粒数目和片层变化、晶臂与枝晶干的夹角以及凝固后Ti-46Al-8Nb合金的组织形貌。结果表明,BaZrO_3复合型壳与Ti-46Al-8Nb合金之间存在约为10μm的扩散层;在抽拉速度7.7 mm/min、温度1 550℃条件下,Ti-46Al-8Nb合金的初生相为α相以及β相,经过定向凝固后的微观组织为γ+α_2片层、γ相以及B2相;在定向凝固过程中,螺旋选晶可以明显使晶粒数目减少,但是对片层间距的大小无影响。  相似文献   

7.
对球磨后的粉末在1350°C保温2 h进行反应烧结,制备Ti-45Al-10Nb合金。对烧结坯料的显微组织,尤其对相组成,晶粒尺寸及颗粒的分布进行细致研究。结果表明,在此烧结条件下,材料的显微组织主要由Ti2Al C颗粒强化的双相γ+α2组织组成,相对于传统Ti Al基合金,该合金呈现出细小、均匀的显微组织。在细晶区,γ相和α2相的平均晶粒尺寸分别为(2.3±0.05)和(5.6±0.05)μm。此外,合金中存在大量位错,且γ相中的位错密度远高于α2相中的位错密度,对位错形成机理进行分析。  相似文献   

8.
剧烈塑性变形对块体纳米金属材料结构和力学性能的影响   总被引:1,自引:0,他引:1  
综述了剧烈塑性变形引起的块体纳米金属材料的结构和力学性能演变.以电化学沉积法制备的fcc结构纳米晶Ni-20%Fe(质量分数)合金为研究对象,通过对其进行不同应变量的高压扭转实验,系统分析了变形引起的结构和力学性能演变.结构表征结果表明:(1)变形引发纳米晶Ni-Fe合金晶粒旋转,实现晶粒长大.同时,晶粒长大过程伴随着位错密度、孪晶密度的演变;(2)存在一个最有利于变形孪晶生成的晶粒尺寸范围(45~100 nm),在这个晶粒尺寸范围之外,去孪晶起主导作用使原有的生长孪晶或变形孪晶消失;(3)位错密度是影响位错与孪晶反应的新的影响因素.当发生孪晶的晶粒内位错密度低时,位错可完全穿过孪晶界,部分穿过孪晶界,或被孪晶界吸收;发生孪晶的晶粒内位错密度高时,大量位错缠绕并堆积在孪晶界附近,形成应力集中,破坏孪晶界原有的共格性.为释放局部应力,将从孪晶界的另一侧发射不全位错形成层错和二次孪晶;(4)在塑性变形导致的晶粒长大过程中,原先偏聚于消失了的晶界上的C和S沿残留晶界扩散并继续偏聚于晶界上.结构与力学性能关系结果表明:随着应变量的增加,应变强化、应变软化交替出现.位错密度对硬度的演变起主导作用,其它结构演变(如孪晶密度的变化和晶粒尺寸变化)对硬度的演变起次要作用.  相似文献   

9.
综述了纳米面心立方金属的变形机制随晶粒尺寸的减小而发生的变化,即变形机制由晶界处发射不全位错、形成孪晶转变为晶界滑移、晶粒转动.当变形机制为晶界处发射不全位错、形成孪晶时,存在最佳孪晶形成晶粒尺寸范围,此时的孪晶形核应力最小.另一方面,随着晶粒尺寸的减小,在变形机制发生转变的临界晶粒尺寸附近存在韧-脆断裂方式的转变.提高孪晶密度、在纳米晶材料中加入微米晶相形成双峰晶粒材料可以提高纳米晶材料的塑性,得到更好的综合机械性能.  相似文献   

10.
FGH96合金静态再结晶行为的研究   总被引:2,自引:2,他引:0  
研究了FGH96合金在再结晶退火中的静态再结晶行为,并对再结晶机理进行了讨论与分析。结果表明:在较大冷变形量下,FGH96合金的静态再结晶在很短时间内完成,再结晶组织中有大量的孪晶组织。冷变形造成γ’/γ,界面上的位错塞积,再结晶形核方式形核有亚晶粗化形核和应变诱导晶界移动(SIBM)方式。γ’相在应变诱发晶界迁移(SIBM)机制中起到两方面作用:一为冷变形在γ’/γ界面上形成高密度的位错塞积,这为晶界单向移动并为最终的再结晶形核提供驱动力,二是再结晶晶粒晶界的移动速度(即晶粒的长大)受到γ’相的分解速率控制。  相似文献   

11.
通过组织形貌观察和蠕变性能测定,研究了锻造态高铌TiAl合金的蠕变与损伤行为。结果表明:铸态高铌TiAl合金经等温锻造,层片晶团的平均尺寸由507μm减小到56.7μm。锻造态高铌TiAl合金在蠕变期间的变形主要发生在γ片层和等轴γ晶中,位错运动至相界/晶界受阻并堆积,可形成位错缠结或位错列,提高位错运动的阻力;其中,等轴γ晶粒中的位错缠结可发生束集促进动态再结晶,形成细小亚晶结构。柏氏矢量为[101]和[011]的位错分别在不同{111}面滑移形成位错网,γ相中的蠕变位错运动至位错网,与其相互作用,可改变原来的运动方向,促进其攀移。蠕变后期,孔洞首先在等轴γ晶区域产生,并在该区域聚集、长大和扩展,直至发生合金的蠕变断裂。这是高温蠕变期间的损伤与断裂机制。  相似文献   

12.
本研究采用热轧+电脉冲处理的方式实现了Cu-14Sn-0.3Ti合金强度与延伸率的协同提升,Cu-14Sn-0.3Ti合金在经过70%热轧+10 min电脉冲处理后,延伸率由4.7%提升至40%,强度由298 MPa提升至530 MPa。通过调控热轧及电脉冲处理工艺,研究了形变储能,脉冲电流对减少层错,促进孪晶生长的影响。结果表明,Cu-14Sn-0.3Ti合金的强度与密度随着形变储能的增加而提升。在焦耳热和电子分风力的共同作用下,Cu-14Sn-0.3Ti合金组织中的δ相发生溶解,层错减少。电脉冲处理后孪晶的形成为位错的运动提供了额外的滑移系,提升了Cu-14Sn-0.3Ti合金的延伸率。一方面孪晶的出现对晶粒进行了分割,细化了晶粒,另一方面,孪晶界的产生阻碍了Cu-14Sn-0.3Ti合金形变时位错的运动,使得Cu-14Sn-0.3Ti合金的强度得到提升。  相似文献   

13.
通过对热连轧(HCR)GH4169合金进行不同工艺热处理、蠕变性能测试和组织形貌观察,研究了热处理工艺对HCR合金组织与蠕变性能的影响。结果表明:热连轧合金中晶粒细小,具有明显的孪晶特征;HCR合金经直接时效后,大量细小γ"相在晶内弥散析出,可提高合金的蠕变抗力,在660℃、700 MPa条件下,使合金的蠕变寿命由60 h提高到126 h;经长期时效处理后,合金中的晶粒尺寸和γ"相略有长大,同时有NbC、Cr7C3碳化物在晶内析出。在蠕变过程中,HCR合金的变形特征是孪晶变形及孪晶内发生位错的双取向滑移;DA合金与LTA合金具有相近的蠕变寿命,其变形特征仍然是孪晶变形和晶内的位错滑移。  相似文献   

14.
杨志昆  王浩  张义文  胡本芙 《金属学报》2021,57(8):1027-1038
采用FESEM、TEM等实验技术,系统研究了750℃、600 MPa条件下,不同Ta含量的镍基粉末高温合金的蠕变性能和蠕变过程中显微组织和变形行为特征以及合金层错能对蠕变行为的影响.结果表明,随着Ta含量的增加,合金层错能呈非线性关系降低.蠕变变形各阶段的变形行为和位错组态的变化与层错能密切相关.低Ta含量合金层错能相对较高,基体位错a/2<110>滑移被阻止在γ/γ'内界面处,不易发生位错分解,可直接进入γ'相中形成反相畴界(APB)或通过Orowan环弓弯模式绕过γ'相;当合金中Ta含量中等时,合金层错能降低,促进在γ/γ'内界面处基体位错发生分解,产生a/6<112>Shockley不全位错开始剪切γ'相,形成超点阵层错(超点阵内禀层错(SISF)或超点阵外禀层错(SESF))和扩展层错(ESF)进而转化形成形变孪晶,呈现层错和形变孪晶共同强化效应,提高蠕变性能;而高Ta含量合金层错能很低,有利于位错在不同{111}滑移面上同时形成尺寸较宽的扩展层错,并出现相互交结的交叉层错抑制形变孪晶的形成,加快蠕变形变裂纹发展.因此,合金中加入适量Ta能有效降低层错能,提高形成不全位错剪切γ'相能力和形成显微孪晶能力,增加蠕变抗力,有效改善合金蠕变性能.  相似文献   

15.
基于晶体塑性理论和有限元方法,利用ABAQUS/UMAT二次开发接口,采用FORTRAN语言开发γ-Ti Al合金晶体塑性本构关系子程序,建立综合考虑位错滑移、形变孪晶和晶界效应的γ-Ti Al合金双晶体模型,模拟常温下不同晶粒取向差(2°、5°、8°、30°、45°和60°)与晶界效应对γ-Ti Al合金塑性变形的影响。结果显示:晶界的存在和晶粒取向差异会导致双晶体变形的不均匀性,在晶界处出现应力集中现象,且晶界区域表现出与晶粒内部区域不同的力学性质。晶界区域的受力状态受到相邻晶粒的影响,晶界角度较小时,两个晶粒滑移系的累积剪切变形较为协调,双晶体整体的塑性变形较为均匀。  相似文献   

16.
高压扭转纳米结构Al-Mg铝合金的微观结构演变和位错组态   总被引:1,自引:0,他引:1  
利用透射电镜(TEM)和高分辨透射电镜(HRTEM)研究高压扭转大塑性变形纳米结构Al-Mg合金的微观结构演变和位错组态。结果表明:对尺寸小于100 nm的晶粒,晶内无位错,其晶界清晰平直;而尺寸大于200 nm的大晶粒通常由几个亚晶或位错胞结构组成,其局部位错密度高达10^17 m^-2。这些位错是1/2〈110〉型60°位错,且往往以位错偶和位错环的形式出现。在高压扭转Al-Mg合金的超细晶晶粒中,用HRTEM同时观察到分别由0°纯螺型位错和60°混合位错分解产生的Shockley部分位错而形成的微孪晶和层错。这些直接证据证实,通常存在于FCC纳米晶中由晶界发射部分位错而产生孪晶和层错的变形机制,同样可以存在于超细晶FCC金属中。基于实验结果,分析了高压扭转Al-Mg合金中的局部高密度位错、位错胞、非平衡晶界、层错和孪晶等对晶粒细化的作用,提出了相应的晶粒细化机制。  相似文献   

17.
采用SEM、EBSD和TEM研究了室温(25℃)和中温(650、700和750℃)下新型镍钴基高温合金力学性能及其变形机制。结果表明:室温下,合金的屈服强度和延伸率分别是1176 MPa和22.5%,主要的变形机制为大量位错发生滑移,不全位错切割γ′相形成孤立层错。当温度达到650℃时,观察到微孪晶切割二次γ′相和γ基体,以连续层错切割二次γ′相和γ基体变形为主。在700~750℃时,以连续层错和微孪晶同时切割二次γ′相和γ基体为主,并且层错的长度和微孪晶的厚度随温度的升高而增加。650~750℃范围内,切割一次γ′相的机制从APB转变到孤立层错。讨论了中温条件下变形机制随温度的变化以及微孪晶、层错等的形成机制。其中给出了a/6<112>不全位错剪切γ′相形成超点阵外禀层错(SESF)的一种原子互换扩散模型,解释微孪晶的形成过程,为进一步研制高性能水平的新型镍钴基高温合金提供参考。  相似文献   

18.
五重孪晶结构能够改善合金的表面性能,而关于合金五重孪晶化表面的研究较少报道。基于分子动力学模拟和纳米压痕方法,采用嵌入原子势函数(EAM)和等温等压系综(NPT),使用半径为14 nm的圆柱压头以40 m/s的压痕速度沿着[112]晶向对单晶镍基合金持续压痕,采用共领域分析法对合金在应力诱导作用下的变形行为进行了分析。结果表明,非共格孪晶界形成于四个不同{111}滑移面交叉中心附近。交叉中心处白色高能原子发射不全位错,堆垛层错产生。随着不全位错持续发射,孪晶得以形核、生长,孪晶界相继形成,最终五重孪晶形成于合金表面。合金表面中五重孪晶的形成并非源于晶界连续不断发射不全位错,而是与压痕过程中合金表面能量增加以及非共格孪晶界息息相关。  相似文献   

19.
研究了Mg-5wt%Zn-1wt%Y合金在热挤压和热轧两种变形过程中组织及性能的变化。结果表明,两种变形工艺均能细化合金组织,提高合金性能。热轧后合金获得了20~30μm均匀的晶粒和少量孪晶,合金的抗拉强度为291.4 MPa,断后伸长率为10.9%;而经过热挤压后的再结晶晶粒尺寸可达2μm,有部分未再结晶区域存在,合金的抗拉强度可达368.8 MPa,断后伸长率为13.4%。较高的强度源于极其细小的再结晶晶粒及弥散分布的第二相。  相似文献   

20.
摘要:本文采用高能球磨及真空热压烧结方法制备超细晶/纳米晶双相γ-TiAl基合金。将Ti、Al、Nb单质粉末经25h高能球磨配制成名义成分为Ti-45Al-5Nb(at.%) 的纳米级混合粉末。球磨后的混合粉末经真空热压烧结(烧结温度1200℃,压力30MPa,保温保压1h),原位合成Ti3Al 及γ-TiAl双相等轴状合金组织,烧结组织由小于500nm的等轴γ-TiAl相和纳米晶Ti3Al相组成。利用Gleeble-1500D对合金进行热压缩模拟实验,变形温度为1100℃-1200℃、应变速率10-4-10-2s-1,研究该合金压缩组织及流变行为。研究结果表明:与γ-TiAl合金微米级晶粒组织相比,超细等轴双相TiAl+Ti3Al组织明显降低了流变峰值应力,使其在2-2.5%应变量时就达到最大,流变应力随应变速率的降低和温度的升高而降低。同时建立流变应力本构方程,反映一定条件下流变过程中材料的结构特性。随温度升高γ相的孪生倾向显著增加,形变主要发生在基体γ-TiAl相中,晶界滑移、位错及孪晶为等轴双相γ-TiAl合金的高温形变机制,动态回复和再结晶为其软化制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号