首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 976 毫秒
1.
为了进一步提高仿人机器人步行时的稳定性,通过对人类步行的研究,并从两足步行机的两步步态规划方法中得到启发,对仿人机器人步行也进行类似的两步规划,但由于结构上的不同,仿人机器人中采用加入上肢运动补偿的方式实现平衡.规划仿人机器人的运动姿态,然后根据零力矩点必须落在稳定区域的原则,对仿人机器人的上肢运动轨迹进行求解,通过这种加入上肢补偿的两步规划来实现仿人机器人的稳定步行.从实验结果可以看出,采用这种两足步态规划方法,在仿人机器人两足步行时,可以使机器人上肢与下肢协调运动,从而提高了步行的稳定性.  相似文献   

2.
本期摘要     
《传感器世界》2016,(11):4-5
舵机控制步行机器人系统设计 首先设计了两足步行机器人的本体结构,并选择舵机作为驱动源。然后.基于广义坐标对该机器人进行了运动学建模,该方法运算简便直观易懂。重点讨论了动态步行的算法设计,详细分析了基于零力矩点的仿人机器人动态步行运动规划方法。结合机器人的几何约束和运动约束.推导机器人参数化步态设计的推导公式,机器人步态的参数化设计大大方便了机器人的运动学和动力学分析。  相似文献   

3.
夏泽洋  陈恳  刘莉  熊璟 《机器人》2008,30(1):1-46
自然步态规划方法是实现仿人机器人步态柔顺和能量优化的可行方法,该方法要求对人体步行及其平衡策略进行定量研究.本文分析自然步态规划方法的原理,建立了一套快捷有效的人体步态测试系统,并通过实验建立了人体步行的参数化数据库.实验结果揭示了人体步行的参数化特征及其平衡策略,对于仿人机器人的自然步态规划及控制提供了理论指导.结论特别指出,仅仅通过规划的方式实现仿人机器人的自然步态是不完备的,自然步态的实现必须同仿生控制策略相结合.同时实验结论对于仿人机器人的本体优化设计也提供了参考.  相似文献   

4.
首先设计了两足步行机器人的本体结构,并选择舵机作为驱动源。然后,基于广义坐标对该机器人进行了运动学建模,该方法运算简便、直观易懂。重点讨论了动态步行的算法设计,详细分析了基于零力矩点的仿人机器人动态步行运动规划方法。结合机器人的几何约束和运动约束,推导机器人参数化步态设计的推导公式,机器人步态的参数化设计大大方便了机器人的运动学和动力学分析。最后,介绍了运动规划的实验设计,并对关节调试作了总结和分析,指出了存在的问题和解决的办法。  相似文献   

5.
针对现有理想化步态动力学模型规划方法复杂、人为指定参数过多、计算量大的问题,提出一种基于体感数据学习人体步态的仿人机器人步态生成方法。首先,用体感设备收集人体骨骼信息,基于最小二乘拟合方法建立人体关节局部坐标系;其次,搭建人体与机器人映射的运动学模型,根据两者间主要关节映射关系,生成机器人关节转角轨迹,实现机器人对人类行走姿态的学习;然后,基于零力矩点(ZMP)稳定性原则,对机器人脚踝关节转角采用梯度下降算法进行优化控制;最后,在步态稳定性分析上,提出使用安全系数来评价机器人行走稳定程度的方法。实验结果表明,步行过程中安全系数保持在0~0.85,期望为0.4825,ZMP接近于稳定区域中心,机器人实现了仿人姿态的稳定行走,证明了该方法的有效性。  相似文献   

6.
为了有效地提高仿人机器人动步行能力,利用基于预观控制的ZMP 步态生成模式的优点并引入脚尖 脚后跟与地面间的旋转关节,生成了机器人的质心和踝关节轨迹.同时,为了得到更快的步行速度,提出了侧向质 心摆动幅度递减和腰关节偏摆力矩补偿的方法.最后在虚拟物理环境下,利用动力学仿真软件实现了虚拟3-D 仿人 机器人快速动步行.仿真结果证明了所采用方法的有效性.  相似文献   

7.
王诗瑶  郭祖华 《计算机仿真》2020,37(3):319-323,413
为了快速生成仿人机器人跑步运动轨迹,研究了一种用于仿人机器人跑步步态生成的步态规划器。采用三维弹簧倒立摆模型描述跑步过程中仿人机器人质心运动规律,奔跑时机器人质心轨迹及落脚点位置可以由四个步态参数来确定,从而将步态规划问题转化成步态参数优化问题,求解了500余种不同运动状态下的步态参数。建立了基于三层BP神经网络的步态规划器,将优化结果作为训练样本训练神经网络。用上述规划器实现了仿人机器人跑步步态规划并对规划结果进行了仿真验证。研究结果表明,基于BP神经网络的步态规划器可以实现步态参数的快速计算,生成的跑步步态逼真;提出的跑步运动步态规划方法可行,为仿人机器人实时轨迹生成提供了一种解决方法。  相似文献   

8.
仿人足底肌电特征的机器人行走规划   总被引:1,自引:0,他引:1  
模仿人类行走规律是规划双足机器人运动的基础.以往模仿人类步态主要通过视觉方法或惯性模块测量(Inertia measurement unit, IMU)方法捕捉人体特征点轨迹.这些方法不考虑零力矩点(Zero moment point, ZMP)的相似性.为解决该问题,本文提出了一种基于足底肌电信号(Electromyography, EMG)和惯性模块测量信号的混合运动规划方法.该方法通过测量足底肌电信号计算出足底压力中心的位置以及踝关节扭矩,结合惯性模块所测量的人体躯干和双足轨迹,来规划双足机器人的步态.首先,用肌电仪测量足底肌电信号,用惯性测量模块测量人体各肢体部分的姿态轨迹,经数据标定后作为仿人机器人的运动参考; 然后,通过预观控制输出稳定的步态.为确保仿人行走的效果,基于人体相似性对运动数据进行了步态优化.实验验证和分析表明, EMG信号超前ZMP约160ms,利用这个特性实现了对压力点位置的有效预测,提高了机器人在线模仿人类行走的稳定性.  相似文献   

9.
为实现对具有16个自由度仿人机器人的姿态控制,采用Kinect传感器对人体姿态的坐标数据进行采集,根据坐标信息利用Processing软件开发基于SimpleOpenNI库的上位机软件,建立人体关节模型,并利用空间向量法对仿人机器人的步态规划以及重心控制算法分析,解析各关节的转动角度,经由无线WiFi模块向仿人机器人发送指令以控制舵机的运动,最终实现对机器人的控制,搭建了基于Kinect传感器的测试平台.测试结果表明:仿人机器人上肢在运动范围内无死角,通过对重心的控制,下肢可实现简单的步行,符合预期效果.  相似文献   

10.
认知人类的步行机理是双足机器人开发的重要基础.在人类行走过程中,外力力矩是影响行走稳定性的决定性因素,步态与外力力矩的相互作用是人类步行机理研究中的关键问题.尽管质心角动量可反映人体受到的外力力矩变化,但会随步态的演化呈现不同的变化规律.以人类自然行走步态为研究目标,通过准确获取人体行走过程中实时运动信息与质心角动量的变化,根据人体行走过程中的外力力矩与质心角动量的角度对人体步态进行力学分析,并结合人体行走过程中的足地关系与矢状面质心角动量变化规律,得出角动量特征点与步态特征点在时间上具有高度一致性的结论,最终实现基于矢状面质心角动量的人类步态周期阶段的精准划分.研究结果对于认知人类步行机理,指导行走康复医疗和双足机器人研发具有重要意义.  相似文献   

11.
Recently, interest in analysis and generation of human and human-like motion has increased in various areas. In robotics, in order to operate a humanoid robot, it is necessary to generate motions that have strictly dynamic consistency. Furthermore, human-like motion for robots will bring advantages such as energy optimization.This paper presents a mechanism to generate two human-like motions, walking and kicking, for a biped robot using a simple model based on observation and analysis of human motion. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like motions. The approach presented here rests on the principle that in most biological motor learning scenarios some form of optimization with respect to a physical criterion is taking place. In a similar way, the equations of motion for the humanoid robot systems are formulated in such a way that the resulting optimization problems can be solved reliably and efficiently.The simulation results show that faster and more accurate searching can be achieved to generate an efficient human-like gait. Comparison is made with methods that do not include observation of human gait. The gait has been successfully used to control Robo-Erectus, a soccer-playing humanoid robot, which is one of the foremost leading soccer-playing humanoid robots in the RoboCup Humanoid League.  相似文献   

12.
步行运动是仿人机器人运动控制的关键环节之一.为了实现快速、稳定的步态,在协方差矩阵自适应进化策略(CMA-ES)的基础上,文中提出仿人机器人螺旋模型算法.在步行优化过程中,将优化任务先划分为3个子任务,按照优化目标分别挑选参数加入相应优化组,同时构建CMA-ES优化器.根据不同的学习目标设计每个CMA-ES优化器,在前一优化组优化结果基础上结合新的需求进行螺旋迭代优化,最终达到既定的学习目标,获得最佳参数值.文中算法应用在HfutEngine仿真3D球队中,机器人的相关步态测试数据显示算法效果较佳.  相似文献   

13.
为实现仿人机器人快速稳定的行走,在满足有效参数组合的条件下,提出一种基于深度强化学习的步行参数训练算法以优化机器人步态。首先,从环境中捕获机器人步态模型参数作为DQN的输入;然后,用DQN来拟合机器人行走产生的状态-动作值函数;最后,通过动作选择策略选择当前机器人执行的步态动作,同时产生奖励函数达到更新DQN的目的。选择NAO仿真机器人为实验对象,在RoboCup3D仿真平台上进行实验,结果证明在此算法下,NAO仿人机器人可以获得稳定的双足步行。  相似文献   

14.
为了克服传统中枢模式发生器(Central pattern generator, CPG)关节空间控制方法的复杂性和局限性, 本文基于自学习中枢模式发生器模型, 提出了一套在线调制和融合多传感器信息的仿人机器人环境自适应行走控制方法.算法难点在于如何在机器人的工作空间将自学习CPG用于工作空间轨迹生成, 并使CPG参数直接和步态模式相关联.本文提出了利用自学习CPG来学习和实时生成机器人质心轨迹和脚掌轨迹的方法, 在线调节机器人步长、抬腿高度和步行速度等关键参数.参考生物反射行为, 利用传感反馈信息激发CPG以产生具有环境适应性的工作空间轨迹, 提升行走质量. 控制系统的参数通过优化算法来进一步改善行走性能.相比于传统的CPG关节空间法, 本文所采用的自学习CPG工作空间法不仅极大简化了CPG网络结构而且提高了仿人机器人行走的适应性.最后, 通过仿人机器人坡面适应性行走的仿真和实验, 验证了所提出控制策略的可行性和有效性.  相似文献   

15.
付根平  陈建平  杨宜民 《机器人》2012,34(4):498-504
针对仿人机器人在步行时产生的绕ZMP(零力矩点)的偏摆力矩导致其失稳甚至摔倒的问题,提出了一种基于双臂摆动的偏摆力矩矫正方法.分析了偏摆力矩产生的原因及其对机器人步行稳定性的影响;根据仿人机器人的连杆模型和手臂摆动的单摆模型,推导出了双臂摆动力矩的表达式,结合双臂摆动的示意图阐述了利用双臂摆动力矩矫正偏摆力矩的原理;采用三次样条插值规划出双臂参数化的摆动角轨迹,再通过穷举法遍历摆动角参数使双臂摆动力矩满足偏摆力矩的矫正要求.仿真结果表明,该方法不仅能较好地矫正偏摆力矩,使机器人实现稳定的步行,而且能保证双臂的摆动角轨迹单调、平滑和周期性。  相似文献   

16.
《Advanced Robotics》2013,27(6):707-736
This paper describes a novel control algorithm for dynamic walking of biped humanoid robots. For the test platform, we developed KHR-2 (KAIST Humanoid Robot-2) according to our design philosophy. KHR-2 has many sensory devices analogous to human sensory organs which are particularly useful for biped walking control. First, for the biped walking motion, the motion control architecture is built and then an appropriate standard walking pattern is designed for the humanoid robots by observing the human walking process. Second, we define walking stages by dividing the walking cycle according to the characteristics of motions. Third, as a walking control strategy, three kinds of control schemes are established. The first scheme is a walking pattern control that modifies the walking pattern periodically based on the sensory information during each walking cycle. The second scheme is a real-time balance control using the sensory feedback. The third scheme is a predicted motion control based on a fast decision from the previous experimental data. In each control scheme, we design online controllers that are capable of maintaining the walking stability with the control objective by using force/torque sensors and an inertial sensor. Finally, we plan the application schedule of online controllers during a walking cycle according to the walking stages, accomplish the walking control algorithm and prove its effectiveness through experiments with KHR-2.  相似文献   

17.
Magnetic micro-robots have been proposed for use in biomedical applications. These studies focus on locomotion control using a gradient, alternating, and rotating magnetic fields at the sub-micro scale. However, this study focuses on a basic mechanism of active locomotion for diagnostic robots. Furthermore, the digestive intestine in the human body has a complex path in which locomotion methods can become either swimming or walking according to the inner condition. Therefore, we propose a new simple mechanism for amphibious locomotion within a rotating magnetic field using the three-axis Helmholtz coil system. The proposed magnetic robot consists of NdFeB permanent spherical magnets, flexible silicone tubes, and legs. Successive changes of actuation of yaw and roll motions cause alternating and walking motions. Direction of movement is decided by rotating the direction of the magnetic field (clockwise or counter-clockwise). In addition, turning directions are decided by the plane of the rotating magnetic field. A magnetic torque between the rotating magnetic field and the magnetic moments produce a constant walking pattern similar to a trotting gait. In addition, an oscillatory motion of the flexible robot body can generate a thrust force in the liquid. Finally, through the various experiments, we evaluate the capability of the locomotion.  相似文献   

18.
Basic walking gaits are a common building block for many activities in humanoid robotics, such as robotic soccer. The nature of the walking surface itself also has a strong affect on an appropriate gait. Much work is currently underway in improving humanoid walking gaits by dealing with sloping, debris-filled, or otherwise unstable surfaces. Travel on slippery surfaces such as ice, for example, greatly increases the potential speed of a human, but reduces stability. Humans can compensate for this lack of stability through the adaptation of footwear such as skates, and the development of gaits that allow fast but controlled travel on such footwear.This paper describes the development of a gait to allow a small humanoid robot to propel itself on ice skates across a smooth surface, and includes work with both ice skates and inline skates. The new gait described in this paper relies entirely on motion in the frontal plane to propel the robot, and allows the robot to traverse indoor and outdoor ice surfaces more stably than a classic inverted pendulum-based walking gait when using the same skates. This work is demonstrated using Jennifer, a modified Robotis DARwIn-OP humanoid robot with 20 degrees of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号