首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
以商业化碳黑科琴黑为碳源,采用球磨和热复合法合成正极S/C复合材料,用X射线衍射、扫描电子显微镜、元素组成分析等分析S/C复合材料的微观结构、组成和形貌,用恒流充放电、循环伏安法、交流阻抗法分析电极材料电化学性能。在0.2 C倍率下首次放电比容量为838.4 m Ah/g,最高达930.3 m Ah/g,经过50次循环后可逆容量依然高达835.1 m Ah/g,显示出良好的循环稳定性。  相似文献   

2.
以危险固体废弃物铝电解阳极炭渣为碳源,采用机械球磨法制备了用于锂离子电池负极的Si/C复合材料,研究了球磨工艺参数对所得复合材料电化学性能的影响。通过XRD、SEM分析观察材料结构和形貌,循环伏安法和恒电流充放电测试表征Si/C复合材料电化学性能。结果表明,球料比对所制备复合材料电化学性能影响不明显; 延长球磨时间、提高球磨转速有利于提升材料循环稳定性和可逆比容量。最佳球磨工艺参数为: 球料比5∶1,球磨时间25 h,球磨转速500 r/min。该条件下所得材料在120 mA/g的电流密度下循环100圈,容量保持在382.4 mAh/g。  相似文献   

3.
采用直流电弧热等离子法一步制备硅/碳球形纳米复合材料。以中值粒径分别为2.6 μm、6.5 μm和15.0 μm的硅碳混合粉末为原料,制得了中值粒径为49.9 nm、56.3 nm和68.9 nm的纳米硅碳复合材料;在200 mA/g的电流密度下3种不同粒径的纳米硅碳负极材料的首次放电比容量分别达到1718 mAh/g,1651 mAh/g和1343 mAh/g,50次循环后其容量保持在1005 mAh/g,761 mAh/g和663 mAh/g;而未处理的硅碳混合粉末首次放电容量约为2321 mAh/g,但50次循环后,容量仅为274 mAh/g。由此可见,利用直流电弧热等离子法制备的硅/碳球形纳米复合材料的电化学性能得到了极大的提升。  相似文献   

4.
为缓解纳米硅粉的体积膨胀,并有效提高其电导率,采用直流电弧等离子蒸发法和液相分散制备高纯、高分散性纳米硅粉,并以蔗糖为碳源,再与膨胀石墨复合,制备出一种新型纳米硅碳复合负极材料。研究结果表明:纯纳米硅在0.1C的倍率下首次放电比容量达到2 712mAh/g,但首次库伦效率仅为33.81%;所制备的纳米硅碳复合材料在0.1C的倍率下,首次充、放电容量分别为615mAh/g和917mAh/g,50个循环以后可逆比容量保持在495mAh/g,循环性能和倍率性能大大改善。  相似文献   

5.
采用两步法制备了具有核壳结构的钛铬酸锂/钛酸锂复合材料,比较了包覆钛铬酸锂前后和不同干燥方式下负极材料的形貌和电化学性能。结果表明,喷雾干燥法制备的复合材料具有较好的球形结构和表面特性,综合电化学性能较好,可逆比容量可达到160.7 mAh/g, 200次1C循环后容量保持率95.4%,材料在15C充放电倍率下其比容量为1C的81%,倍率性能优异。利用交流阻抗测试,对材料的失活机理进行了初步探索,表明电荷和锂离子传递阻力的增加是材料容量衰减的主要原因  相似文献   

6.
以磷酸铁、碳酸锂为原材料,葡萄糖、碳纳米管和石墨烯为导电剂,通过砂磨工艺及碳热还原法制备了高性能磷酸铁锂、无定型碳、石墨烯、碳纳米管复合正极材料LFP/C/G/CNTs。材料表征结果表明,碳纳米管、石墨烯和无定形碳与磷酸铁锂复合在一起,成功构建了高速电子传输网络; 电化学性能测试表明,LFP/C/G/CNTs具有良好的循环性能和倍率性能。在0.1C电流密度下,LFP/C/G/CNTs放电比容量为161.5 mAh/g; 在5C电流密度下,LFP/C/G/CNTs复合材料放电比容量仍达126.5 mAh/g; 在2C电流密度下,循环200次后,LFP/C/G/CNTs放电比容量152.1 mAh/g,容量保持率为99.6%。  相似文献   

7.
以升华硫和活性炭为原料,分别采用机械固相混合、液相混合和高温固相法制备了硫/活性炭复合正极材料,并用X射线衍射(XRD)、循环伏安(CV)、交流阻抗(EIS)、交换电流密度(j0)和恒流充放电测试考察了所得材料的结构及电化学性能.发现制备方法对复合材料的放电比容量和循环性能有明显影响,高温固相法制备的材料有更好的电化学性能,在0.1 C倍率下充放电,其首次放电比容量为465.3 mAh/g,分别是机械固相混合和液相混合所得样品放电比容量的5.8倍和2倍;10次循环后放电比容量仍然大于100 mAh/g.  相似文献   

8.
采用湿化学方法,结合高温固相反应法制备了锂离子电池正极材料Li2NixMn1-xSiO4(x=0.4,0.5,0.6,0.7),以蔗糖为碳源对Li2NixMn1-xSiO4材料进行表面包覆.运用XRD、SEM、循环伏安测试和充放电循环等方法表征了Li2NixMn1-xSiO4的结构与电化学性能.XRD结果表明,Li2NixMn1-xSiO4/C固溶体属于Pmn21空间群结构.制备的Li2Nio.4Mn0.6SiO4/C具有较好的电化学性能,首次循环的充放电容量分别为219.9,132.4 mAh/g,循环20次后的可逆容量为72 mAh/g.  相似文献   

9.
用快淬法制得晶粒尺寸为20~50 nm的富铈稀土储氢合金,其0.4C放电比容量达到310 mAh/g.经表面改性处理后,合金的活化性能、循环性能、大电流放电性能和1.2 V放电电压平台等电化学性能都得到提高.经4 h表面改性处理后,在1C放电条件下,合金只需2次活化,就能达到最大比容量300.2 mAh/g;经18次循环后,合金的放电比容量仍保持在297 mAh/g,其放电效率达到93.80%.1C,2C和3C放电能力分别达到97.84%,93.27%和92.40%.  相似文献   

10.
共沉淀法制备LiFePO4/C复合材料的结构与性能   总被引:1,自引:1,他引:0  
为了获得性能优异的LiFePO4/C复合材料,通过共沉淀法合成前躯体,用不同的方式进行碳包覆,制得橄榄石型LiFePO4/C复合材料.用XRD和SEM等手段对产物的结构和形貌进行研究,通过充放电实验测试其电化学性能.结果表明,在共沉淀过程中直接加入葡萄糖所制得的LiFePO4/C复合材料样品颗粒粒径最小,电化学性能最好,在0.1C倍率下,首次放电比容量为152mAh/g.  相似文献   

11.
田华玲  粟智 《矿冶工程》2016,(2):104-107
以Li_2CO_3、Fe_2O_3和TiO_2为原料,葡萄糖为碳源,采用高温固相法合成了锂离子电池LiFeTiO_4/C复合材料。采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)等手段对材料的晶体结构和形貌进行了表征,通过恒流充放电、循环伏安(CV)和交流阻抗对材料的电化学性能进行了测试。结果表明,碳包覆后的LiFeTiO_4负极材料循环性能优于未经碳包覆的材料。在室温下,充放电倍率为0.5C时,LiFeTiO_4/C负极材料的首次放电比容量为327.8 m Ah/g,循环50周后仍保持在308.3 m Ah/g。  相似文献   

12.
采用水热法合成Li_4Ti_5O_(12)负极材料,研究材料在大倍率条件下的电化学性能。X射线衍射(XRD)分析结果表明所合成的Li_4Ti_5O_(12)材料晶体尺寸在纳米级。透射电子显微镜(TEM)分析结果表明材料的结晶粒度为50~100 nm。电化学充放电测试结果表明该材料在10 C倍率充放电时首次放电比容量达到269.9 m A·h/g,循环50次后稳定在177 m A·h/g左右,显示出优异的快速充放电性能。  相似文献   

13.
摘要:本论文采用高温固相反应法制备了高电压尖晶石材料LiNi0.5Mn1.5O4 (LNMO)。采用XRD,Raman,SEM,首次充放电曲线,CV曲线,EIS阻抗谱研究了球磨时间对材料结构和性能的影响。XRD结果表明所有样品均具有相似的晶格结构,Raman结果表明所有样品均为无序型空间结构。SEM研究结果表明,球磨时间为4 h时材料颗粒尺寸较均匀。首次充放电曲线和CV曲线结果表明,球磨时间并没有改变的材料的反应机制。球磨时间4h时,材料表现出最优异的电化学性能,主要包括高容量(0.1 C比容量115.8 mAh g-1),高倍率(10 C 放电比容量 76.2mAh g-1)和高循环稳定性(0.1 C-100次循环后容量保持率为94.7%)。  相似文献   

14.
通过感应等离子体蒸发凝聚法制备纳米Si粉,以葡萄糖为有机碳源,经高温碳化将纳米Si粉钉扎在石墨载体表面制备出Si/C复合负极材料,采用X射线衍射(XRD)、场发射扫描电子显微镜(0FESEM)和电化学性能测试等对比分析了纳米Si粉、石墨载体和Si/C复合负极材料的结构和性能。结果表明,纳米Si粉作为锂离子电池负极材料首次放电容量和可逆充电容量分别为3 519.4 m Ah/g和2 063.7m Ah/g,但是首次效率只有58.6%,且循环寿命差,Si/C复合负极材料能够有效缓冲纳米Si粉的体积变化,发挥较高的可逆储锂容量,提高循环寿命,但是需进一步改善首次效率。  相似文献   

15.
采用高温固相法合成了LiFePO4/C和Al、Mg共掺杂的LiFe0.95Al0.03Mg0.02PO4/C复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能量仪(EDS)、恒流充放电测试、循环伏安法(CV)等手段对材料的结构、形貌及电化学性能进行了表征。XRD结果表明,Al、Mg共掺杂后的样品并没有破坏LiFePO4的橄榄石结构,同时还增强了LiFePO4结构的稳定性、提高了电子导电性和Li+扩散速度;通过SEM和EDS观测到LiFePO4呈球形颗粒,并在复合样品中检测到有Al和Mg元素存在。分别以0.5C、1C、3C和5C倍率充放电,LiFe0.95Al0.03Mg0.02PO4/C的放电比容量分别为145.1、142.6、133.2和124.9 mAh/g;1C倍率下循环30次后仍保持99.2%的初始容量,显示出良好的循环寿命。  相似文献   

16.
采用固相球磨法制备了Li2FeP2O7/C正极材料,研究了烧结温度、碳包覆含量以及碳源对其结构、形貌以及电化学性能的影响。结果表明: 高温固相烧结合成样品的适宜温度为680 ℃,以柠檬酸为碳源、碳包覆量为5%时,合成的Li2FeP2O7/C晶型完整,晶粒较小且均匀,0.1C倍率下的放电比容量可达102.6 mAh/g,0.5C倍率下的初次放电比容量可达83.4 mAh/g,循环30次后放电比容量为80.7 mAh/g,展现了较好的循环性能以及倍率性能。  相似文献   

17.
采用高温固相法合成了Li_4Ti_5O_(12)和Li_4Ti_(4.95)Ce_(0.05)O_(12)负极材料,采用X射线粉末衍射(XRD)、扫描电镜(SEM)、循环伏安(CV)和充放电测试等手段研究样品的结构和电化学性能。XRD图谱表明铈掺杂并没有改变样品的晶体结构;循环伏安曲线表明Li_4Ti_(4.95)Ce_(0.05)O_(12)样品具有更好的可逆性,铈的掺杂有利于锂离子的可逆脱嵌;微分电容曲线表明Li_4Ti_(4.95)Ce_(0.05)O_(12)的充放电的峰电位值差比Li_4Ti_5O_(12)小,说明前者具有更小的电化学极化;充放电测试表明,5 C倍率充放电时,Li_4Ti_(4.95)Ce_(0.05)O_(12)和Li_4Ti_5O_(12)的可逆放电容量分别为120 m A·h/g和80 m A·h/g左右,说明铈的掺杂提高了Li_4Ti_5O_(12)材料的倍率容量和循环性能。  相似文献   

18.
通过化学氧化-热还原法制备了高柔韧性、片层少的石墨烯粉体,将其与碳纳米管、炭黑制备出石墨烯复合导电浆料,并分析对比了不同片径的石墨烯复合导电浆料和常规复合导电浆料对LiNi0.5Co0.2Mn0.3O2锂离子电池性能的影响。结果表明,石墨烯含有丰富的含氧官能团,复配后的石墨烯复合导电浆料在正极材料LiNi0.5Co0.2Mn0.3O2中可以构建高效的点-线-面结构的三维空间导电网络,其中,D50片径为11.581 μm的石墨烯复合导电浆料电化学性能较为优异,在8C(20 A)大倍率放电条件下容量保持率为104.45%,1C/8C倍率循环200周后电池仍有2 121 mAh的容量,容量保持率为87.90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号