首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在称样量为0.067~0.12 g, 镍助熔剂为0.37 g, 分析功率为5.5 kW的条件下, 建立了用惰气熔融-脉冲加热法同时测定人造金刚石中氧和氮含量的方法, 并对氧和氮校准曲线的制作问题进行了讨论。对人造金刚石样品中氧和氮进行了9次测定, 其测定结果的相对标准偏差分别小于3.0%和3.5%。按照方法, 使用不同氧氮标样建立的两条校准曲线对人造金刚石样品中氧和氮进行测定, 所得氧和氮的测定值一致, 并且与惰气高温萃取-脉冲加热法所得氧和氮的测定值一致。  相似文献   

2.
测定锆合金中氧和氮的方法多为单独测定,操作繁琐,故实验提出了锆合金中氧和氮同时测定的方法。称取0.06g锆合金样品,放入镍篮,投入脱气后的石墨套坩埚中,控制分析功率为5.0kW,氧和氮积分时间分别为40s和60s,以锆合金标样AR640建立校准曲线,实现了惰气熔融-红外/热导法对锆合金中氧和氮含量的同时测定。氧和氮的方法测定下限分别为0.000 7%和0.000 2%。采用实验方法对2个锆合金实际样品中氧和氮进行测定,氧和氮测定结果的相对标准偏差(RSD,n=11)分别为1.5%~4.4%和7.6%~8.6%。按照实验方法测定锆合金标样BCR-276中氧和氮,测定结果与认定值基本一致。  相似文献   

3.
通过实验对样品处理方法、样品称样量、样品称样量与镍助熔剂量的比例、分析功率的选择以及氧和氮校准曲线的制作等进行讨论,以惰气熔融 脉冲加热法同时测定NdFeB合金中氧和氮的含量。对NdFeB合金样品中氧和氮进行了7次测定,其测定结果的相对标准偏差分别小于1.2%和2.5%,其氧和氮的测定值与使用不同的氧和氮标样建立的校准曲线所得的测定值相一致,且氮的测定值与化学分析法的测定值相吻合。方法已用于监测NdFeB合金生产过程中氧和氮的含量。  相似文献   

4.
目前铝钒合金中氮的测定方法没有相应的国家标准或者行业标准,因此建立了测定铝钒合金中氮含量的方法。对惰气熔融-热导法测定铝钒合金中氮的分析条件进行了探讨。称取0.07g铝钒合金样品,放入镍篮,投入脱气后的石墨套坩埚中,控制分析功率为5.0kW,氮积分时间为60s,以钛合金标样进行仪器校准,可实现惰气熔融-热导法对铝钒合金中氮含量的测定。方法检出限为0.00012%,以空白标准偏差的10倍计算出氮的定量限为0.0004%。采用实验方法对两个铝钒合金实际样品中氮进行测定,测定结果的相对标准偏差(RSD,n=11)为6.9%~11%,加标回收率在94%~107%。  相似文献   

5.
选用锡囊+镍篮作为助熔剂,通过优化氧氮分析仪的工作条件,建立了脉冲加热惰气熔融-热导法测定微氮合金中氮含量的检测方法。采用与试样基体含量相近的氮化锰铁和氮化硅铁标准样品绘制氮的校准曲线,氮元素校准曲线的线性相关系数为0.9992。试验方法用于微氮合金实际样品的测定,氮元素测定结果的相对标准偏差(RSD,n=10)在0.53%~0.97%,平均回收率在98.7%-101.5%之间。试验结果表明该方法具有较好的精密度和准确度,能够满足常规生产检验的分析要求。  相似文献   

6.
氮含量是衡量炼钢促进剂性能的重要参数之一,测定炼钢促进剂中氮含量十分必要。称取0.10 g样品于锡箔中,包裹住样品,将其压紧封口后装入镍篮中,投入石墨套坩埚内进行测定,以能覆盖炼钢促进剂中氮含量范围且氮含量呈一定阶梯水平的铁屑粉、氮化锰铁、高氮铬铁和钒氮合金粉末状标准物质绘制校准曲线,建立了惰气熔融-热导法测定炼钢促进剂中氮含量的方法。在优化的实验条件下,样品中氮含量与其对应的峰面积呈良好的线性关系,校准曲线的相关系数为0.999 3,方法检出限为0.003%,方法定量限为0.010%。分别采用实验方法对4个炼钢促进剂样品中氮含量平行测定7次,测定结果的相对标准偏差(RSD)在0.91%~1.7%之间。分别称取2个0.05 g炼钢促进剂样品,加入约0.05 g铁屑粉标准物质或高氮铬铁标准物质进行加标回收试验,加标回收率为95%~102%。  相似文献   

7.
蔺菲  王蓬  李朝  李冬玲  赵雷 《冶金分析》2018,38(7):38-43
采用在冰醋酸(1+4)中煮沸2~3min,并用无水乙醇洗涤、干燥的方式对样品表面进行处理,以超高纯镍篮为助熔剂包裹样品,实现了惰气熔融-红外吸收/热导法对铜铬合金中氧和氮的测定。为了与样品中氧和氮的释放率保持一致,选择与样品基体较为匹配的金属铬作为校准物质建立校准曲线,氧和氮校准曲线的相关系数分别为0.9937和0.9936,氧和氮的测定下限分别为0.0019%和0.00012%。对实验方法进行精密度考察,氧和氮测定结果的相对标准偏差(RSD,n=11)分别为3.4%~3.6%和5.0%~5.9%。将实验方法应用于铜铬合金样品分析,并分别向其中加入金属铬控样GSB(2016-4)进行加标回收试验,结果表明,氧的回收率为98%~103%,氮的回收率为96%~104%。  相似文献   

8.
非晶锆基合金的发展结合了金属和玻璃等学科,具有广泛的应用领域,准确测定其中的氧和氮含量,可有效开展产品研发过程中的质量控制。称取0.07~0.08 g样品,采用镍篮做助熔剂,设定分析功率为6.0 kW,采用锆合金标准样品校准仪器,使用石墨套坩埚进行测定,建立了惰气熔融-红外吸收/热导法测定非晶锆基合金中氧和氮的测定方法。选择与非晶锆基合金中氧和氮含量较匹配的锆合金标准物质,采用单标准点校准程序进行系数校正,用锆合金标准物质以及钛合金标准物质进行验证试验,结果表明,氧和氮的测定结果基本在认定值的扩展不确定度(k=2)区间内。结果表明:在选定的实验条件下,方法的检出限分别为氧0.000 048%,氮0.000 066%,方法的定量限分别为氧0.000 16%,氮0.000 22%。对两组非晶锆基合金样品进行精密度试验,氧和氮测定结果的相对标准偏差(RSD,n=9)均小于5%;按实验方法对非晶锆基样品进行加标回收试验,氧的回收率为98%~103%,氮的回收率为95%~102%。  相似文献   

9.
王宽  梁清华  周恺  王辉  郑伟 《冶金分析》2015,35(3):61-63
对惰气熔融-红外吸收法测定钛钼合金中氧含量的分析方法进行了研究。确定了最佳分析条件为:称取0.06 g样品于0.85 g镍篮中,投入石墨坩埚中进行测定,控制分析功率为5.0 kW,分析时间为40 s。使用钛标样501-657建立校准曲线,得到回归方程为y=1.336 88 x。利用3倍空白标准偏差计算得到氧的检出限为0.000 22%。采用方法测定了2个钛钼合金样品中氧的含量,测定结果的相对标准偏差(RSD,n=11)分别为2.0%和3.3%。方法加标回收率在95%~103%之间。  相似文献   

10.
钟华 《冶金分析》2014,34(12):7-12
对惰气熔融-红外吸收/热导法同时测定钒铝中间合金中氧氮量的分析方法进行了研究。确定了最佳分析条件为:称取0.05~0.06 g样品于0.50 g镍囊中,将包裹好的样品投入高温型石墨坩埚中进行测定,分析功率为5.1 kW。方法采用钛标样确定氧的校正参数,氮的校正参数由钒铝中间合金内控样(氮的蒸馏-滴定法结果)确定。采用方法测定了AlV55、AlV65、AlV85样品中氧和氮,所得结果的相对标准偏差(n=8)均不大于3.9 %,氮的测定值与蒸馏 滴定法一致。在AlV85样品中加入碳化硅粉氧标样,氧的加标回收率为97%~105%;在AlV65样品中混入光谱纯Al2O3粉制备成新的样品,按方法测定该样品中氧的结果与理论计算值一致。  相似文献   

11.
在对仪器测定条件优化的基础上, 以0.15 g镍箔作助熔剂, 采用自行设计的由套坩埚和内坩埚组成的新型石墨坩埚, 建立了同时测定难熔金属钨、钽中氧、氮和氢的脉冲熔融-飞行时间质谱法。选择与钨、钽产品中氧和氮含量较匹配的钢标准样品建立测定氧和氮的校准曲线, 和与钨、钽产品中氢含量较匹配的钛标准样品建立测定氢的校准曲线。方法中氧、氮、氢的检出限分别为0.5 μg、0.5 μg、0.4 μg, 测定下限分别为1.7 μg、1.7 μg、1.2 μg。方法用于钨条和钽片样品中氧、氮、氢的测定, 对于钨条样品氧、氮、氢测定结果的相对标准偏差分别为5.5%、11.5%、8.9%(n=11), 对于钽片样品氧、氮、氢测定结果的相对标准偏差分别为12%、24%、22%(n=11), 并且氧、氢和氮的测定结果分别与红外吸收法和热导法基本一致。  相似文献   

12.
随着人们对痕量杂质元素含量检测要求的逐年提高,提出了一种钒氮合金中氧、氮、氢同时测定的方法。称取0.050 g经处理后的样品,用洗净的镍箔包裹后放入镍篮中,整体投入脱气后的高温石墨套坩埚中,控制分析功率为4.5 kW,以12C+14N+2H+作为氧、氮和氢的质谱分析线,实现了脉冲熔融-飞行时间质谱法对钒氮合金材料中氧、氮和氢的同时测定。从实验结果可以看出,在最优的实验条件下,校准曲线的线性相关系数均大于0.999,方法中氧、氮和氢元素的检出限分别为0.02、0.06和0.002 μg/g。将实验方法应用于钒氮合金样品中氧(6.5~94.3 μg)、氮(12~264 μg)、氢(0.10~8.8 μg)元素的测定,测定结果与脉冲熔融-红外/热导法(IR/TCD)基本一致;氧和氮的相对标准偏差(RSD,n=7)均小于9%,氢测定结果的标准偏差(SD,n=7)不大于0.000 5%。  相似文献   

13.
通过锉刀锉去样品表面污物、丙酮清洗、自然风干方式对样品进行预处理,在高纯镍篮中加入样品,建立了惰气熔融红外/热导法测定钽钨合金中氧和氮含量的检测方法。探讨了助熔剂、分析功率、称样量等对试验结果的影响,实验选择在助熔剂为镍篮,分析功率为5.0 kW,称样量约为0.10 g的条件下进行。使用钛合金标样GBW(E)020188进行校准,以另一锆合金标样AR640进行验证,标样中氧和氮的测定结果分别在标准值范围之内。在优化的条件下进行测定,氧和氮的检出限分别为0.000 13%和0.000 04%,定量限分别为0.000 44%和0.000 13%。按照实验方法对钽钨合金进行分析,氧和氮测定结果的相对标准偏差(RSD,n=11)分别为6.6%和11.2%,加标回收率分别为93%~102%和95%~103%。  相似文献   

14.
通过对助熔剂、称样量、分析功率和积分时间的研究,建立了惰气熔融-红外吸收法测定钽钨合金中氢含量的方法。实验结果表明,称取0.15 g钽钨合金样品,放入镍囊,投入脱气后的石墨套坩埚中,设置分析功率为4 000 W,积分时间为60 s,可实现惰气熔融-红外吸收法对钽钨合金中氢含量的测定。方法检出限为0.000 03%,定量限为0.000 1%。将实验方法应用于钽钨合金样品中氢含量的测定,结果的相对标准偏差(RSD,n=11)为16.5%。按照实验方法对另一钽钨合金样品中氢含量进行测定,并加入适量钛标样GBW(E)020187进行加标回收试验,得加标回收率为94%~101%。  相似文献   

15.
高纯金属铬中氢会导致金属发生点蚀,因此需要严格控制其含量。称取0.05~0.20 g试样,以锡囊为助熔剂,控制分析功率为4 500 W,实现了脉冲加热惰气熔融-红外吸收法对块状和碎屑状两种形态高纯金属铬中氢含量的测定,方法可用于分析氢含量小于10μg/g的样品。采用单点校准法,以氢含量尽量接近或略高于未知试样中氢含量为原则,选用钢标准样品502-855绘制氢的校准曲线,并用其他钢标准样品502-416和501-529对校准曲线进行验证,结果表明,测定结果处于标准值的允许范围之内。方法的检出限为0.025μg/g,定量限为0.081μg/g。应用实验方法对块状和碎屑状高纯金属铬试样中的氢含量进行测定,测定结果与脉冲加热惰气熔融-热导法的结果一致,相对标准偏差(RSD,n=8)分别为1.2%和2.5%。在块状和碎屑状高纯金属铬试样中分别加入钢中氢标准样品进行加标回收试验,回收率为97%~106%。  相似文献   

16.
利用脉冲加热惰气熔融-热导法对钒氮合金中氮元素含量进行了分析,探究了称样量、分析功率、工作曲线、样品处理、助熔剂选择等因素对氮含量的影响,确定了钒氮合金中氮元素分析的最佳方法.结果表明,在加热功率4000 W、氮积分时间40 s的条件下,称样量控制在0.0250~0.0300 g,利用钢标与粉末标准样品拟合建立工作曲线...  相似文献   

17.
惰气熔融-热导法测定钛铁中氮   总被引:1,自引:1,他引:0       下载免费PDF全文
王伟  曹忠孝  王俊 《冶金分析》2010,30(9):62-64
讨论了影响氧氮联测仪测定钛铁中氮的分析工作条件,采用惰气熔融-热导法测定钛铁中氮。结果表明:采用带盖镍囊包裹样品,在称样量和镍助熔剂加入量之比为1∶4.5,分析功率为5 000 W的条件下,应用纯硝酸钾建立氮的校准曲线,回归方程为y=0.924x-0.001 56,相关系数r=0.999 0。用本方法测定钛铁试样10次,得到的相对标准偏差(RSD)≤3.2%,加标回收率在97%~102%之间。  相似文献   

18.
通过对氧、氮含量标准分析方法进行整理、归纳,得出结论:惰气熔融红外吸收法和热导法是无机材料氧、氮含量现行主流标准分析方法;库仑滴定法、分光光度法逐渐被替代,或与新方法并存;蒸馏-中和滴定法在高含量氮的标准分析方法中保持优势;同时存在具有特色的杜马斯燃烧法、元素分析仪法以及质谱法。分别列出了各方法主要技术参数,剖析了惰气熔融红外吸收法和热导法的原理、制样要求、表面处理方法、助熔剂作用及比例、助熔剂种类、校准方式、校准物质等。展望低熔点金属及合金中氧、氮含量标准分析方法发展,期待更多设备、辅助材料的研发工作,使无机材料氧、氮含量标准分析方法更完善。共引用各类标准77项。  相似文献   

19.
熔融制样-X射线荧光光谱法测定钛铁合金中化学成分,核心技术是合金试样氧化技术,以有效避免样品熔融过程中铂-金坩埚受到侵蚀。在石墨垫底的瓷坩埚内以专用助熔剂将钛铁样品氧化成钛铁熔球,以四硼酸锂与碳酸锂混合熔剂熔融制备成玻璃片,建立X射线荧光光谱法(XRF)测定钛铁中钛、硅、锰、磷、铝含量的方法。试验探讨了熔剂选择、助熔剂用量、氧化条件、稀释比、脱模剂、熔融时间等条件对玻璃片质量及检测结果的影响,确定了最佳氧化、熔融实验条件。熔融制得的玻璃片强度高、质地均匀、检测面光洁,满足XRF测定要求。使用有证标准物质建立校准曲线,钛、硅、锰、磷、铝校准曲线相关系数介于0.999 6~1.000 0之间,校准曲线相关性满足XRF要求。方法应用于钛铁合金样品检测,各元素测定结果的相对标准偏差(RSD)介于0.25%~6.5%之间;准确度实验表明,钛铁标准样品测定结果与认定值相符。实验方法解决了钛铁熔融制样过程腐蚀铂-金坩埚问题,实现了钛铁合金中钛、硅、锰、磷、铝含量的同时快速分析,能够满足钛铁合金质量控制及作为炼钢生产指导的日常检测需求。  相似文献   

20.
本文采用色谱用六通阀,结合脉冲熔融-飞行时间质谱元素分析仪的气路流程,自制了应用于氧、氮、氢、氩联测的标气校准装置。实现了定量管冲洗和标气注入两个过程的灵活控制。通过该校准装置,建立了金属材料中的低含量氧、氮、氢和氩工作曲线,验证了校准装置分析的稳定性。采用建立的工作曲线对实际样品进行了分析,结果与认定值一致。标气校准装置的使用弥补了超低含量范围段标准样品缺乏的不足,解决了测氩用标准样品缺失的难题。实验结果表明,应用标气校准装置建立的工作曲线,线性良好,可用于金属材料实际样品的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号