首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了提高解淀粉芽孢杆菌fmbj37产γ-聚谷氨酸的产量,采用响应面法优化其发酵培养基成分。首先用Plackett-Burman(PB)设计对培养基中9个组分的重要性进行评价,筛选出3个关键影响因素:蔗糖、谷氨酸钠和磷酸氢二钾。然后进行最陡爬坡实验确定最佳响应面区域,最后通过响应面分析得到蔗糖、谷氨酸钠和磷酸氢二钾的最佳浓度。结果表明,经优化得到的最佳培养基成分为:蔗糖115 g/L、谷氨酸钠59.35 g/L、磷酸氢二钾2.85 g/L、蛋白胨10 g/L、硫酸镁1.5 g/L、氯化钾1 g/L、硫酸亚铁0.0006 g/L、硫酸锰0.025 g/L、硫酸铜0.00064 g/L,在该培养基中γ-聚谷氨酸的产量达到(41.2±0.51)g/L,比优化前的5.2 g/L提高了6.9倍。  相似文献   

2.
细菌纤维素/γ-聚谷氨酸复合膜发酵条件的优化   总被引:1,自引:0,他引:1  
在发酵培养基中添加γ-聚谷氨酸(γ-PGA),可以制备具有更优性能的细菌纤维素(BC)复合膜.采用响应面分析法优化细菌纤维素/γ-聚谷氨酸复合膜发酵生产工艺,首先通过Plackctt-Burman试验设计对影响复合膜发酵生产的8个因素进行筛选,得到3个关键影响因子:聚谷氨酸添加浓度,pH和γ-聚谷氨酸的添加时间;然后用最陡爬坡试验逼近响应值的最大区域;最后通过Box-Behnken设计及响应曲面分析确定了各考察因子的最佳取值:葡萄糖25g/L,柠檬酸6g/L,Na2HPO42g/L,γ-聚谷氨酸1.04g/L,γ-聚谷氨酸的添加时间4h,发酵初始pH5.0,温度30℃,发酵周期7d.在优化条件下复合膜的湿重达到61.07g/100mL培养基试验值与预测值误差为-3.05%,较初始培养基复合膜产量提高9 1.32%.  相似文献   

3.
利用从纳豆中筛选得到的一株纳豆芽孢杆菌发酵生产γ-聚谷氨酸(γ-PGA)。在单因素优化实验的基础上,通过响应面法对发酵培养基进行优化,得到最佳培养基配方为蔗糖43.92 g/L、大豆蛋白胨7.00 g/L、谷氨酸钠46.32 g/L,γ-PGA产量由原来的7.253 g/L提高到11.794 g/L。  相似文献   

4.
于平  黄星星  张一舒 《食品科学》2018,39(22):87-92
通过响应面法对枯草芽孢杆菌ZJS18发酵生产γ-聚谷氨酸的培养条件进行优化。首先采用Plackett-Burman试验设计筛选出对γ-聚谷氨酸产量有显著影响的3?个关键因素,即蔗糖、酵母粉和谷氨酸钠;然后通过Box-Behnken试验设计和响应面法对这3?个关键因素的用量进行优化。响应面优化后的3?个关键因素的最佳质量浓度为蔗糖64.40?g/L、酵母粉7.10?g/L和谷氨酸钠57.96?g/L。枯草芽孢杆菌ZJS18发酵生产γ-聚谷氨酸的最佳培养条件为蔗糖用量64.40?g/L、酵母粉用量7.10?g/L、谷氨酸钠用量57.96?g/L,氯化钠用量30?g/L,MgSO4用量0.3?g/L、K2HPO4用量2?g/L,初始pH?7.5,接种量5%,装液量40?mL/250?mL,温度37?℃,摇床转速200?r/min,发酵时间36?h。在上述条件下,γ-聚谷氨酸产量为13.20?g/L。与未优化前相比,产量提高了1.88?倍。  相似文献   

5.
γ-聚谷氨酸合成菌株的筛选与优化培养   总被引:1,自引:0,他引:1  
从土壤筛中筛选分离获得1株γ-聚谷氨酸合成菌Bacillus subtilis PGS-1,在富含谷氨酸和葡萄糖的培养基中可大量合成γ-聚谷氨酸,与大多文献报道的微生物合成的γ-聚谷氨酸相比,具有较低的分子量(300ku~400ku)和较窄的分子量分布,可适用于低分子量要求的医药、化妆品和水处理等应用领域,值得深入开发研究.为提高γ-聚谷氨酸的发酵产量,对Bacillus subtilis PGS-1的摇瓶培养基条件进行了响应面优化,确定了影响γ-PGA合成的显著因素依次为谷氨酸、葡萄糖和(NH4)2SO4;在优化条件下,γ-聚谷氨酸产量达26g/L,较优化前提高了44%.  相似文献   

6.
响应面法优化谷氨酸温度敏感突变株生产L-谷氨酸   总被引:1,自引:0,他引:1  
采用响应面分析法对谷氨酸温度敏感突变株产生谷氨酸的培养基成分进行优化。首先利用Plackett-Burman试验设计筛选出影响谷氨酸产量的三个主要因素:糖蜜,玉米浆和MgSO4。在此基础上用最陡爬坡实验逼近最大响应区域,再利用Box-Behnken试验设计及响应面分析法进行回归分析。通过求解回归方程得到最佳浓度:糖蜜30.59ml/L,玉米浆33.82ml/L,MgSO42.99g/L,谷氨酸产量理论最大值达87.68g/L。经模型验证,预测值与验证试验平均值接近,在优化条件下谷氨酸产量提高了21.5%。  相似文献   

7.
采用响应面法对出芽短梗霉菌发酵制备β-聚苹果酸的培养基进行优化。使用Plackett-Burman(P-B)实验设计对培养基中相关因素进行评价,筛选出有显著影响效应的因素。通过最陡爬坡实验、中心复合实验设计及响应面分析确定主要影响因素的最佳浓度及回归模型,并经实验验证模型的可行性。优化后三种显著影响因素:葡萄糖、丁二酸铵和碳酸钙,最佳浓度分别为:110.91、3.66、45.30g/L,β-聚苹果酸的发酵产量达到41.36g/L,较优化前的20.74g/L提高了199%。  相似文献   

8.
γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)是一种新型绿色高分子材料,被广泛应用于农业生产、食品、医药等众多领域。目前γ-PGA生产成本高,产量低等问题较为突出。为降低生产成本,该文以廉价甘蔗糖蜜作为碳源。利用单因素与响应面法优化发酵培养基。结果显示,最佳培养基组成为糖蜜可溶性固形物浓度8.68%、酵母膏浓度4.23 g/L、FeSO4·7H2O 浓度 0.78 g/L,味精浓度 80 g/L,γ-PGA 产量为(67.88±0.41)g/L,与预测值 67.17 g/L 非常接近,相较于优化前γ-PGA产量提高了1.19倍,为工业化生产奠定基础。  相似文献   

9.
目的:筛选一株高产γ-聚谷氨酸(γ-PGA)的菌株,并优化其发酵条件。方法:从豆腐作坊周边土地取样,采用平板稀释涂布法,筛选高产γ-PGA的菌株,通过菌落形态、分子生物学方法对其进行鉴定;以γ-PGA产量为响应值,在单因素实验的基础上,以温度、pH、转速、底物浓度为实验因素,采用Box-Behnken法设计四因素三水平试验进行响应面优化,确定其产γ-PGA最佳发酵条件。结果:筛选获得一株高产γ-PGA的芽孢杆菌B-6578,鉴定为暹罗芽孢杆菌(Bacillus siamensis);通过单因素和响应面最终获得该芽孢杆菌发酵产γ-PGA的最佳条件为:温度37.5 ℃,pH7.48,转速240 r/min,底物浓度52.70 g/L,摇瓶发酵36 h,γ-PGA的产量达到24.82 g/L,γ-PGA转化率为47.10%,比优化前提高了25.19%。结论:采用响应面法优化得到的发酵条件方便可行,利于γ-PGA的进一步开发利用。  相似文献   

10.
为提高暹罗芽孢杆菌LW-1(Bacillus Siamese LW-1)的γ-聚谷氨酸(γ-PGA)产量,基于单因素实验的结果,利用Plackett-Burman以及最陡爬坡实验确定响应面的最佳区域,设计一个三因素三水平的Box-Behnken实验来得到暹罗芽孢杆菌LW-1的最适培养基配方。结果表明,暹罗芽孢杆菌LW-1的最佳培养基配方为:谷氨酸钠86.71 g/L,柠檬酸钠17.94 g/L,MgSO4·7H2O 2.11 g/L,甘油25 g/L,KH2PO4 1.4 g/L,(NH4)2SO4 14 g/L,MnSO4 0.075 g/L,CaCl2 0.1 g/L,FeCl3·6H2O 0.04 g/L,在该培养基中γ-PGA产量达到44.78 g/L,与理论预测的最大值45.91 g/L非常接近,比未优化时(23.26 g/L)的γ-PGA产量提高了1.93倍。  相似文献   

11.
周景文  徐建  陈守文  喻子牛 《食品科学》2006,27(10):288-292
为了提高聚-γ-谷氨酸(PGA)的产量,采用正交设计方案对发酵培养基组分中谷氨酸、葡萄糖、柠檬酸、甘油的配比进行试验设计,运用径向基神经网络建立PGA产量与培养基组分浓度之间的预测模型,采用遗传算法对此模型进行全局寻优,得到四种主要组份的最佳配比:谷氨酸21.2g/L、葡萄糖75.4g/L、柠檬酸7.2g/L、甘油10.8g/L,PGA产量达到12.8g/L,采用上述方法优化后的培养基使PGA的产量原始培养基提高了39.1%.  相似文献   

12.
枯草芽孢杆菌BSD-2产抗菌肽发酵培养基的优化   总被引:3,自引:0,他引:3  
为了提高枯草芽孢杆菌BSD-2抗菌肽的产量,应用响应面法对发酵培养基进行优化。采用Plackett-Burman设计对培养基中相关影响因素的效应进行评价,筛选出3个重要因素依次为蛋白胨、淀粉和豆饼粉;然后进行最陡爬坡试验逼近最佳响应面区域;最后通过Box-Behnken设计及响应面分析法确定最佳培养基配方为:蛋白胨14.29g/L、淀粉14.07g/L、豆饼粉6.49g/L、CaCO3 2.0g/L、MgSO4 1.0g/L。拟合实验模型结果显示,发酵液抗菌肽的产量增加为原来的1.77倍。  相似文献   

13.
响应面法优化枯草芽孢杆菌产γ-聚谷氨酸发酵工艺   总被引:1,自引:0,他引:1  
以1 株谷氨酸依赖型γ-聚谷氨酸(poly-γ-glutamic acid,γ-PGA)产生菌Bacillus subtilis GXA-28为研究对象,利用响应面法系统优化其γ-聚谷氨酸发酵培养基成分。通过单因素试验、Plackett-Burman试验、最陡爬坡试验以及Box-Behnken试验构建响应方程,利用该方程预测得到最优培养基:蔗糖33.65 g/L、酵母膏0.4 g/L、NH4Cl 1.6 g/L、谷氨酸钠15 g/L、 KH2PO4 0.4 g/L、K2HPO4·3H2O 1.68 g/L、MgSO4·7 H2O 0.1 g/L、MnSO4·H2O 0.04 g/L。利用优化培养基,在40.2 ℃、160 r/min条件下摇瓶发酵22 h,γ-PGA产量达到16.63 g/L,底物谷氨酸钠转化率比优化前提高了20%,达到100%。  相似文献   

14.
该研究以谷氨酸棒杆菌(Corynebacterium glutamicum)P169为研究对象,以谷氨酸产量为主要评价指标,采用单因素试验和响应面法对其发酵条件进行优化,并进行摇瓶和20 L罐分批补料发酵验证。结果表明,谷氨酸棒杆菌P169产谷氨酸的最佳发酵条件为酵母粉41.0 g/L、葡萄糖27.0 g/L、尿素12.0 g/L和pH 7.0。在此优化条件下,谷氨酸产量达25.1 g/L,比优化前(16.5 g/L)提高了52.1%。以此为基料进行20 L罐分批补料发酵,谷氨酸产量达155 g/L,比优化前(142 g/L)提高了9.2%。该研究为提高谷氨酸棒杆菌谷氨酸产量提供了一种技术解决方案。  相似文献   

15.
碳源对γ-聚谷氨酸发酵的影响   总被引:2,自引:0,他引:2  
以γ-聚谷氨酸生产菌yt102为供试菌株,研究了碳源对γ-聚谷氨酸发酵的影响.首先通过摇瓶实验确定发酵的最佳碳源为葡萄糖和柠檬酸,二者按一定的比例混合更有利于聚谷氨酸的产生,进一步利用10L发酵罐补料分批发酵确定碳源的最佳用量为40g/L,继续优化培养条件,确定采用溶氧控制的脉冲补料方式可有效延续γ-聚谷氨酸的合成.在最优发酵条件下,通过10L发酵罐补料分批发酵50h,r-聚谷氨酸产量可达34.5g/L.  相似文献   

16.
γ-聚谷氨酸对带鱼鱼糜凝胶特性的影响   总被引:2,自引:0,他引:2  
γ-聚谷氨酸作为一种新型可食用的食品添加剂,可显著提高带鱼鱼糜的凝胶强度(P<0.05),且对鱼糜的白度值影响较小。响应面优化试验结果表明,采用两段加热方式,γ-聚谷氨酸添加量0.54‰、第1段加热温度52.6℃,加热时间39min时,鱼糜凝胶强度最高,为281.66g.cm。在各影响因素中,γ-聚谷氨酸添加量对凝胶强度的影响最大,其次是第1段加热温度,加热时间影响最小。SDS-PAGE电泳图谱和扫描电镜图谱显示γ-聚谷氨酸与鱼糜蛋白质可相互作用,从而提高鱼糜凝胶强度。经两段式加热的鱼糜凝胶强度显著高于一段加热方式(P<0.05),但二者在肌原纤维蛋白SDS-PAGE电泳图谱上无明显差异,说明γ-聚谷氨酸对二者肌原纤维蛋白质的组成没有影响。  相似文献   

17.
目的:鉴定一株高产γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)的菌株,并优化其发酵培养基。方法:以实验室前期诱变筛选出的菌株N-2出发,通过16s rDNA核酸序列分析,对该菌株进行了鉴定;采用单因素实验、响应面设计对菌株的发酵培养基进行优化,最终确定最佳培养基配方。结果:经过16s rDNA序列分析,菌株N-2被鉴定为Bacillus subtilis。通过Plackett-Burman(PB)试验,筛选出3个显著影响γ-PGA产量的因素:葡萄糖、谷氨酸钠和K2HPO4·3H2O;用最陡爬坡试验逼近最大产量区后,利用box-behnken试验获得响应曲面最优解,确定葡萄糖、谷氨酸钠和K2HPO4·3H2O的最佳浓度分别为42.93、44.85、2.39 g/L。经过54 h发酵γ-PGA终产量为28.51 g/L,比优化前提高了34.48%。结论:响应面法试验次数少、周期短,可以快速优化发酵培养基成分,结果可靠,是提高产量的有效途径。  相似文献   

18.
利用响应面法优化γ-聚谷氨酸发酵培养基   总被引:2,自引:0,他引:2  
利用筛选出的枯草芽孢杆菌发酵生产γ-聚谷氨酸,并对其发酵培养基进行优化。首先采用逐因子试验法寻找出各因素的参考范围。在此基础上,利用Plackett-Burman试验筛选出显著影响γ-PGA产量的3个主要因素:酵母粉、谷氨酸钠和CaCl2。用最陡爬坡试验逼近最大产γ-PGA的区域。然后利用Box-Behnken试验对显著因素进行优化,得酵母粉、谷氨酸钠和CaCl2的最佳浓度分别为4.18g/L、76.89g/L和0.1422g/L。在优化后发酵培养基条件下,γ-PGA的产量达到了43.26g/L,比初始γ-PGA产量提高了1.035倍。  相似文献   

19.
目的:通过实验对γ-聚谷氨酸提取条件进行优化得到一组产量高的最优条件。方法:利用枯草芽孢杆菌通过发酵生产得到含有γ-聚谷氨酸的发酵液,再以异丙醇作为沉淀剂提取发酵液中的产物。通过响应曲面分析方法设计三因素三水平Box-Behnken实验优化提取条件。最后利用薄层色谱和红外光谱对产物进行结构鉴定。结果:利用Design-Expert软件处理数据并优化得到一组最佳提取条件:异丙醇的添加倍数为4.5,沉淀温度为-5℃,沉淀时间为23h。在最优条件下得到γ-聚谷氨酸的产量为0.1796g/10mL,预测精确度达99%。结论:在低温下用异丙醇沉淀发酵液中的产物是一种有效可行的提取γ-聚谷氨酸的方法。  相似文献   

20.
基于壳聚糖和γ-聚谷氨酸的协同絮凝对赤砂糖回溶糖浆进行澄清脱色处理.实验中,通过先后加入壳聚糖、γ-聚谷氨酸实现协同絮凝,应用于赤砂糖回溶糖浆的澄清脱色,获得了理想的效果.运用单因素和多因素正交实验探讨了壳聚糖用量、pH、γ-聚谷氨酸用量、反应温度等因素对澄清脱色效果的影响,结果表明:壳聚糖和γ-聚谷氨酸对糖浆澄清脱色的最佳工艺条件为:壳聚糖量0.5g/L;γ-聚谷氨酸量0.06g/L;pH5.0;反应温度20℃.在最佳工艺条件下,脱色率达到66.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号