首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了La_2Mg_(17)和La_2Mg_(16)Ni合金,研究了其贮氢性能。给出了这两种合金的解吸等温线,并据此计算了相应的△H,△S值。解吸等温线的分析表明:La_2Mg_(16)Ni的解吸等温线有分别对应于Mg_2Ni-Mg_2NiH_4以及Mg-MgH_2的两个平台。通过X射线衍射物相分析和电子探针分析,总组成为La_2Mg_(16)Ni的合金实际上是La_2Mg_(17)型和Mg_2Ni型两相混合物。La_2Mg_(16)Ni的氢化产物是La的氢化物以及MgH_2和Mg_2NiH_4。对两种合金还作了常温低压吸氢及常压加热吸氢等应用试验。从研究结果看来,La_2Mg_(17)和La_2Mg_(16)Ni合金是性能较好的贮氢材料。  相似文献   

2.
采用冶金法制备了Mg_2Ni_(0.9)Co_(0.1)储氢合金,通过XRD和SEM/EDS研究了合金的相组成和显微组织,利用PCT和DSC研究了合金的吸放氢性能。结果表明,铸态合金由包晶Mg_2Ni相、Mg-Mg_2Ni共晶组织和少量的先析出Mg-Ni-Co三元相组成,元素Co能够固溶在Mg_2Ni相中形成Mg_2(Ni, Co)固溶体相。合金吸氢后转化为Mg_2NiH_4相、Mg_2Ni_(0.9)Co_(0.1)H_4相和MgH_2相。Co部分替代Mg_2Ni中的Ni,显著提高了合金的等温吸放氢动力学性能,Mg_2Ni_(0.9)Co_(0.1)氢化物的放氢温度明显降低,起始放氢温度约为200℃。  相似文献   

3.
为了改善Mg_2Ni型合金的气态贮氢动力学性能,在合金中添加少量La,并用快淬工艺制备La-Mg-Ni-Cu系Mg_2Ni型(Mg_(24)Ni_(10)Cu_2)_(100-x)La_x(x=0,5,10,15,20)(摩尔分数,x%)合金。采用XRD、SEM及HRTEM分析铸态及快淬态合金的微观结构;采用全自动Sieverts测试仪测试合金的气态吸放氢动力学;采用差热分析仪测试不同加热速率下合金的放氢DSC曲线,并用Kissinger方程计算合金的放氢激活能。建立动力学与La含量及淬速的关系。结果表明:添加La不改变合金的主相Mg_2Ni相,但导致第二相La_2Mg_(17)和LaMg_3相出现,第二相的量随La含量的增加而增加。添加La和快淬有助于合金形成纳米晶-非晶结构,降低放氢激活能,从而改善放氢动力学。当La含量x从0增加到20时,铸态合金的放氢激活能E_k~(de)从73.18 kJ/mol下降到60.41 kJ/mol,而30m/s的快淬态合金的E_k~(de)值从66.16 kJ/mol下降到50.50 kJ/mol。  相似文献   

4.
研究Ni含量对La_5Mg_(95-x)Ni_x(x=5、10、15)三元合金的显微组织、热力学和动力学性能的影响。采用XRD和SEM探索合金的相和组织的变化情况,采用自动Sievert设备测试合金吸放氢性能曲线和PCI曲线。研究表明,随着Ni含量的增加,合金的储氢动力学性能得到提高,但是合金的储氢容量有所下降。三种成分的合金中,La_5Mg_(80)Ni_(15)合金表现出最低的放氢活化能以及最高的吸放氢速率,其放氢活化能为57.7kJ/mol。通过测定合金PCI曲线和van’tHoff方程发现,随着Ni含量的增加,合金的热力学性能先提高后降低,其中La_5Mg_(85)Ni_(10)表现出最优异的热力学性能,其焓和熵的数值分别为-72.1 kJ/mol和-123.2J/(mol·K)。  相似文献   

5.
研究了不同制备工艺下不同量的Ce和Ti添加剂对Mg_2Ni合金性能的影响。结果表明:不同的制备工艺导致了复合材料结构和颗粒尺寸的不同。制备得到的Mg_2Ni+20wt%(Ce H_3-TiH_2)复合材料在373 K温度下的吸氢量为1.5wt%,在573 K温度下的放氢量为2wt%。与复合物Mg_2Ni+20wt%Ce Mg_2Ni+10wt%TiH_2相比,Ce_(0.09)Mg_2Ni+10wt%TiH_2样品的氢扩散动力学性能有了显著改善。试验发现,Mg_2Ni+20wt%(Ce H_3-TiH_2)在吸放氢循环过程中有结构的转化。首先是Ti从复合添加剂中分离后,与Mg_2Ni相发生反应生成Mg_3Ti Ni_2相;而新生成的Mg_3Ti Ni_2相增加了各相之间的自由界面能,将Mg_2Ni+20wt%(Ce H_3-TiH_2)复合物的起始放氢温度降低到了383 K。  相似文献   

6.
采用三步感应熔炼法制备了La_(1-x) Mg_xNi_(4.25)Al_(0.75)(x=0.0,0.1,0.2,0.3)储氢合金,研究了该系列合金的晶体结构和储氢性能。结果表明,当x为0.0和0.1时,合金由单一的La Ni4Al相组成;而x为0.2和0.3时,合金由La Ni4Al相,(La,Mg)Ni3相和AlN i3相构成。随着Mg含量x从0.2增至0.3时,合金的第二相丰度和吸/放氢平衡压明显升高,同时储氢容量减小。研究发现,当Mg添加量x=0.1时,合金除具有良好的储氢容量和低平台压外,其吸氢动力学性能更好。  相似文献   

7.
制备了La_2Mg_(17)和La_2Mg_(16)Ni合金,研究了其贮氢性能。给出了这两种合金的解吸等温线,并据此计算了相应的△H,△S值。解吸等温线的分析表明:La_2Mg_(16)Ni的解吸等温线有分别对应于Mg_2Ni-Mg_2NiH_4以及Mg-MgH_2的两个平台。通过X射线衍射物相分析和电子探针分析,总组成为La_2Mg_(16)Ni的合金实际上是La_2Mg_(17)型和Mg_2Ni型两相混合物。La_2Mg_(16)Ni的氢化产物是La的氢化物以及MgH_2和Mg_2NiH_4。对两种合金还作了常温低压吸氢及常压加热吸氢等应用试验。从研究结果看来,La_2Mg_(17)和La_2Mg_(16)Ni合金是性能较好的贮氢材料。  相似文献   

8.
掺Cr纳米晶Mg_2Ni合金的气态储氢性能   总被引:5,自引:0,他引:5  
纳米晶Mg2 Ni1-xCrx(x =0 ,0 .1,0 .2 ,0 .3)合金由纯Mg、Ni、Cr粉在 5 0 0℃经 3h烧结后机械球磨而成。在 2 10℃吸氢、2 5 0℃放氢的条件下 ,添加Cr后合金的最大吸放氢量明显提高 ;纳米Mg2 Ni0 .8Cr0 .2 合金的气态储氢量和吸氢动力学性能较好 ,第一次放氢量就达到 3.0 % ,并且循环稳定性良好 ,吸氢后生成Mg2 NiH4 、Mg2 NiH0 .2 4 相。纳米Mg2 Ni0 .7Cr0 .3 合金的放氢量在不经过活化的条件下便达到最大值 ,然而循环稳定性差 ,这是由于循环过程中有MgH2 生成而造成的  相似文献   

9.
采用第一性原理方法研究了钛合金化对Mg_2Ni及其氢化物储氢性能的影响。计算结果表明,在掺杂浓度为0~0.5的范围内,Ti优先占据Mg(6i)位,六方结构的固溶体合金Mg_((2-x))TixNi极易分解为立方结构的Mg3TiNi2和六方结构的Mg_2Ni组成的复合相。Ti的掺杂削弱了H原子和Ni原子间的相互作用,降低了其合金体系的吸氢反应焓,提高了Mg2Ni氢化物的解氢能力。  相似文献   

10.
研究了Co和Cu取代Ni以及磁热处理对La0.67Mg0.33Ni3-xMx(M=Co,Cu)(x=0,0.5)合金吸放氢反应热力学和动力学性能的影响。结果表明,Ni被Co和Cu元素部分替代后,合金的吸放氢量增大,放氢温度降低,吸放氢特征时间(tc)减小,吸放氢过程中的扩散活化能降低。磁热处理明显地提高了3种铸态合金的吸氢量,增大了吸放氢平台宽度,改善了合金的吸放氢动力学性能,其中磁热处理对La0.67Mg0.33Ni2.5Co0.5合金改性效果最好,吸放氢量分别为1.40%和1.32%(质量分数,下同),放氢峰所对应的温度为77.8℃,吸放氢特征时间"tc"为91.4和379.3s,吸放氢扩散活化能分别为16.3和23.3kJ/mol。  相似文献   

11.
采用负压感应熔炼法制备了(La_(0.7)Mg_(0.3))Ni_x(x=2,2.5,3)储氢合金,对比分析了不同组分的快淬和铸锭(La_(0.7)Mg_(0.3))Ni_x储氢合金在退火前后的储氢性能、物相组成和显微形貌。结果表明,随着(La_(0.7)Mg_(0.3))Ni_x合金中Ni含量的增加,快淬储氢合金的放氢平台逐渐升高且变宽,放氢速率和放氢容量逐渐增加,(La_(0.7)Mg_(0.3))Ni_(2.5)合金的吸放氢平台压力适中;x=2.5时,铸锭储氢合金具有相对x=2时更宽和平整的吸放氢平台,且平台压更高,Ni含量的增加有助于提高(La_(0.7)Mg_(0.3))Ni_x储氢合金的放氢速率;铸锭和快淬(La_(0.7)Mg_(0.3))Ni_x储氢合金在铸态和不同温度退火态下的物相都由LaNi_5、(LaMg)Ni_3和(LaMg)_2Ni_7相组成,且随着退火温度升高,LaNi_5和(LaMg)Ni_3相有朝着(LaMg)_2Ni_7相转变的趋势。  相似文献   

12.
用快淬工艺制备了Mg2Ni型纳米晶合金,合金的成分为Mg20Ni10-xCux(x=0, 1, 2, 3, 4)。用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构,采用程控电池测试仪测试了合金电极的电化学性能,并用自动控制的Sieverts设备测试了合金的吸放氢动力学性能。结果表明,所有的快淬态合金具有纳米晶结构,Cu替代Ni不改变合金的Mg2Ni型主相,但显著地改善了合金的电化学贮氢性能,包括放电容量和电化学循环稳定性。此外,合金的吸氢量随Cu含量的增加先上升后下降,而合金的放氢量随Cu含量的增加而增加。  相似文献   

13.
为了提高Mg2Ni基合金的储氢动力学性能,通过熔炼方法分别添加金属元素Nd,Zn和Ti来防止镁的氧化和蒸发,将Mg2Ni基合金在有覆盖剂保护的电阻炉中进行熔炼。借助XRD 和 SEM/EDS研究了铸态合金的相组成和微观组织。采用定容法在Sievert’s型PCT测试仪上测试了合金的氢化动力学性能。Nd、Zn和Ti的添加导致了微量相Mg6Ni和Ni3Ti的生成。Nd和Zn溶解在Mg2Ni基合金的α-Mg、Mg2Ni和MgNi2相中。添加Nd元素后,合金的首次吸氢量高于Mg2Ni的,达到2.86%(质量分数)。Mg2Ni基合金的吸氢动力学性能和活化性能均有所提高。在前3次吸放氢循环过程中,添加Zn和Ti的合金吸氢量和吸氢动力学性能均得到提高。采用Hirooka动力学模型分析了合金的氢化动力学性能及反应机制。  相似文献   

14.
为了改善Mg2Ni型合金的贮氢性能,采用Co部分替代合金中的Ni以及快淬工艺制备了纳米晶和非晶态Mg20Ni10-xCox(x=0,1,2,3,4)贮氢合金。用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构,并测试了合金的气态吸/放氢动力学及电化学贮氢性能。结果表明,在快淬无Co合金中没有形成非晶相,但快淬含Co合金中形成一定量的非晶相。Co替代Ni及快淬处理显著地改善了合金的气态吸放氢性能。同时,Co替代Ni也显著地提高了快淬态合金的放电容量和电化学循环稳定性。  相似文献   

15.
快淬工艺对Mg2Ni型合金气态及电化学贮氢动力学的影响   总被引:1,自引:0,他引:1  
用铸造及快淬工艺制备Mg2Ni型Mg2-xLaxNi(x=0,0.2,0.4,0.6)贮氢合金。用XRD、SEM、HRTEM分析铸态及快淬态合金的微观结构,合金的气态贮氢动力学性能用自动控制的Sieverts设备测试,并用程控电池测试仪测试合金的电化学贮氢动力学。结果发现,La替代Mg明显地改变Mg2Ni型合金的相组成。当x≤0.2时,La替代Mg不改变合金的主相Mg2Ni,但出现少量的LaMg3及La2Mg17相。当La替代量x≥0.4时,合金的主相改变为(La,Mg)Ni3+LaMg3。快淬含La合金显示了以非晶相为主的结构,表明La替代Mg提高了Mg2Ni型合金的非晶形成能力。合金的气态及电化学吸放氢动力学对La含量及快淬工艺敏感,适当的快淬处理可以提高合金的气态及电化学贮氢动力学,但获得最佳贮氢动力学的快淬工艺与合金的成分密切相关。  相似文献   

16.
为了改善Mg2Ni型合金的贮氢性能,采用Co部分替代合金中的Ni以及快淬工艺制备了纳米晶和非晶态Mg20Ni10-xCox(x=0,1,2,3,4)贮氢合金。用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构,并测试了合金的气态吸/放氢动力学及电化学贮氢性能。结果表明,在快淬无Co合金中没有形成非晶相,但快淬含Co合金中形成一定量的非晶相。Co替代Ni及快淬处理显著地改善了合金的气态吸放氢性能。同时,Co替代Ni也显著地提高了快淬态合金的放电容量和电化学循环稳定性。  相似文献   

17.
采用磁场辅助烧结合成法(MASS)制备了化学计量比为La0.67Mg0.33Ni3的储氢合金,通过X射线衍射(XRD)、等温定容法(PCT)和差示扫描量热法(DSC)分析了合金的相结构和吸放氢性能。XRD结果显示:合金主相为PuNi3型结构的(La, Mg)Ni3,氢化后分解为以La2Ni7、MgNi2和LaNi3结构为主的复相产物,合金因吸氢发生晶格膨胀。PCT测试表明:1 T磁场下合成的合金在室温下具有最小的滞后系数(0.480)、最大的放氢量1.307(质量分数,%),综合性能最优。该合金放氢DSC曲线上有2个交叠的吸热峰,分别对应于(La, Mg)Ni3和LaNi5氢化后的放氢过程。  相似文献   

18.
采用固相烧结方法制备Mg_2Ni_(0.7)M_(0.3 )(M=Al, Mn, Ti)合金。利用X射线衍射仪、扫描电镜和扫描透射电镜对合金的相组成和显微组织进行系统表征。结果发现,Mg_2Ni_(0.7)M_(0.3)合金中形成了具有面心立方结构的金属间化合物Mg_3MNi_2,其与Mg和Mg_2Ni共存;且M原子半径与Mg原子半径越接近,越有利于Mg_3MNi_2的形成。采用Sievert和Tafel方法对Mg_2Ni_(0.7)M_(0.3)合金的储氢性能和耐腐蚀性能进行研究。Mg_2Ni_(0.7)M_(0.3)合金的吸/放氢性能得到明显改善。Mg_2Ni_(0.7)Al_(0.3)、Mg_2Ni_(0.7)Mn_(0.3)和Mg_2Ni_(0.7)Ti_(0.3)合金的脱氢反应的激活能较Mg_2Ni的激活能明显降低,分别为-46.12、-59.16和-73.15k J/mol。与Mg_2Ni合金相比,Mg_2Ni_(0.7)M_(0.3)合金的腐蚀电位向正方向移动,如Mg_2Ni_(0.7)Al_(0.3)合金(-0.529 V)与Mg_2Ni合金(-0.639 V)的腐蚀电位差为0.110 V,表明添加Al、Mn和Ti能使合金的耐腐蚀性能得到显著提高。  相似文献   

19.
掺Cr纳米晶Mg2 Ni合金的气态储氢性能   总被引:5,自引:5,他引:5  
纳米晶MgNi1-xCrx(x=0,0.1,0.2,0.3)合金由纯Mg、Ni、Cr粉在500℃经3h烧结后机械球磨而成。在210℃吸氢、250℃放氢的条件下,添加Cr后合金的最大吸放氢量明显提高;纳米Mg2Ni0.8Cr0.2合金的气态储氢量和吸氢动力学性能较好,第一次放氢量就达到3.0%,并且循环稳定性良好,吸氢后生成Mg2NiH4、Mg2NiH0.24相。纳米Mg2Ni0.7Cr0.3合金的放氢量在不经过活化的条件下便达到最大值,然而循环稳定性差,这是由于循环过程中有MgH2生成而造成的。  相似文献   

20.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用Cu部分替代合金中的Ni,用快淬技术制备Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)合金,用XRD、SEM、HRTEM分析铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试合金的气态贮氢动力学性能,用程控电池测试仪测试合金的电化学贮氢动力学。结果表明,所有快淬态合金均具有纳米晶结构,无非晶相形成。Cu替代Ni不改变合金的主相Mg2Ni,但使合金的晶粒显著细化。快淬处理及Cu替代均显著地提高合金的气态及电化学贮氢动力学性能。当淬速从0m/s(铸态被定义为淬速0m/s)增加到30m/s时,Mg2Ni0.8Cu0.3合金在5min内的吸氢饱和率从57.2%增加到92.87%,20min的放氢率从21.6%增加到49.6%,高倍率放电能力(HRD)从40.6%增加到73.1%,氢扩散系数(D)从1.02×10-11cm2/s增加到4.08×10-11cm2/s,极限电流密度(IL)从113.0mA/g增加到715.3mA/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号