首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将退火后的T2紫铜圆柱坯料进行常温压缩实验,根据所得应力应变曲线,采用DEFORM-3D模拟杯壁厚度为0.5mm的杯形件的微反挤压成形过程。研究了凸模速度和摩擦系数对材料等效应变分布和凸模载荷的影响。结果表明,凸模速度越大,材料等效应变差值越大,变形越不均匀,但对凸模载荷无明显影响。摩擦系数越大,材料变形越不均匀,且凸模载荷明显增加。根据模拟结果选择合适的工艺参数进行微反挤压实验,实验所得杯形件晶粒变形较均匀,与模拟结果较吻合。  相似文献   

2.
针对车用齿轮轴制定了冷挤压成形工艺方案,并对其进行了相应的正、反挤压模具设计。利用Deform-3D进行有限元仿真模拟,对成形件进行等效应变、等效应力、损伤和载荷—行程曲线分析。选取凸模速度、摩擦因数以及凸模锥角3种工艺参数进行正交试验及工艺优化,通过正交试验的方差分析得出摩擦因数对齿轮轴反挤压载荷大小具有显著影响,并得到各参数对成形载荷的影响顺序为:摩擦因数>凸模锥角>凸模速度。最终得到的最优反挤压工艺参数为:凸模速度为25mm/s、摩擦因数为0.10和凸模锥角为25°。优化后反挤压的最大载荷由原来的2.15×10~4 kN减小到1.01×10~4 kN,降低了53个百分点。  相似文献   

3.
温挤压工艺参数影响连杆衬套预成形件的力学性能。为了在连杆衬套温挤压过程中获得较小的挤压力、等效应力和较大的等效应变,本文采用Design-Expert中的Box-Behnken中心组合的方法,以连杆衬套预成形件的挤压力、等效应变、等效应力为评价指标,通过响应曲面法进行数值分析和优化,探究摩擦因数、挤压速度、毛坯预热温度三个主要参数对连杆衬套温挤性能的影响。结果表明:影响连杆衬套温挤压力的顺序为:挤压速度摩擦因数毛坯预热温度;影响等效应变的顺序是:摩擦因数毛坯预热温度挤压速度;影响等效应力的顺序是:挤压速度毛坯预热温度摩擦因数。优化的工艺参数可以保证连杆衬套性能。  相似文献   

4.
根据AZ31镁合金流动应力-应变曲线建立了材料模型,应用Deform-3D软件对AZ31镁合金薄壁管材反挤压过程进行了有限元模拟,分析了挤压过程中坯料和管材内部温度场、损伤因子及流动速率的分布情况,着重探讨了不同挤压温度、挤压速度和模角对最高温升、等效应力、流动速率及挤压力峰值的影响。结果表明,AZ31镁合金薄壁管材反挤压的最佳工艺参数:挤压温度为310℃、挤压速度为1mm/s、模角为60°。  相似文献   

5.
结合生产实际利用DEFORM-3D有限元模拟软件对某深盲孔壳体零件进行数值模拟,探讨了该零件温挤压加工中凸模应力应变分布规律,分析了温挤压凸模等效应力场、等效应力-凸模行程曲线、等效应变场、轴向压应力和拉应力、轴向应力-凸模行程曲线,并重点研究了应力应变对温挤压凸模早期失效的影响。凸模承受的压应力超过模具材料的抗压极限时凸模会发生镦粗现象;当凸模承受的拉应力超过其许用应力时,凸模就会产生破裂。应力集中主要在凸模柄端截面尺寸突然减小处,因此设计凸模时,柄端截面尺寸不能急剧减小,否则凸模容易在此处断裂而使模具失效。  相似文献   

6.
采用控制单一变量法设计型材挤压试验,通过DEFORM-3D有限元软件模拟分析不同挤压模角、挤压温度和挤压速度对热挤压成形过程中金属流动、等效应力、等效应变及最大挤压力的影响。模拟结果表明,当选择挤压模角45°、挤压温度1050℃和挤压速度120mm·s-1时,TC4钛合金Y型材挤压变形过程中的挤压力最小且产品表面质量最好。基于模拟结果,对钛合金Y型材进行挤压工艺试验并观察挤出产品的金相组织。试验结果表明,在挤压模角、温度和速度选择合理的情况下,可以挤出表面、平直度、尺寸等合格质量的TC4钛合金Y型材且挤压后微观组织得到了细化。  相似文献   

7.
王聪 《锻造与冲压》2009,(10):44-44,46,48-50,52,53
在反挤压时.对输出(工件等效应变.挤匝力.凸模应力.凹模应力)影响最关键的输入因素是凸模圆角半径和摩擦系数。输出如应力应变.挤压力等对挤压速麦不是很敏感。  相似文献   

8.
应用Deform-3D软件,对6061铝合金的等径角挤压过程进行了数值模拟,研究了摩擦对挤压过程的影响,并分析了挤压过程中挤压力的变化以及应力和应变的分布情况。等径角挤压试验在1000kN压力机上进行,测定了实际挤压载荷,并采用不同的润滑剂对摩擦的影响进行了研究。结果表明,6061铝合金的等径角挤压变形过程中应力和应变呈不均匀分布,摩擦对挤压过程有着重要的影响。摩擦因数越大,挤压力越大,变形越不均匀。另外,对模拟结果进行了试验验证,结果基本一致。  相似文献   

9.
采用数值模拟方法分析了齿轮冷挤压过程的影响因素。发现坯料的选择要考虑挤压力的大小,最好比齿顶圆大1~2 mm,坯料中带孔挤压比不带孔挤压降低挤压力约10%。带凸台的冲头的凸台高度要小于凹模入口角的高度。凹模的入口角尽量加大,以减小受力。挤压力随着凹模芯棒直径的增加而增加。采用复合挤压是一种很好的齿轮成形方式,能够降低材料消耗和后续的切削量。  相似文献   

10.
采用有限元软件DEFORM-3D对7075铝合金等通道角挤压(ECAP)过程进行数值模拟,分析了不同摩擦条件下载荷变化、变形行为以及等效应力应变分布情况,并利用7075铝合金动态再结晶模型对微观组织变化过程进行了预测。结果表明,随着摩擦因数增大,载荷峰值明显增大甚至成倍增长,且载荷值波动加剧,试样"端部效应"减弱,等效应力应变分布不均匀;试样中部稳定变形区晶粒随挤压道次增多而不断细化,试样与通道接触部位形成晶粒细小区,经过4道次挤压后,摩擦因数为0.4时稳定变形区的晶粒比摩擦因数为0.1时的细小。  相似文献   

11.
为了通过大塑性变形技术制备出满足工业需求的大尺寸块体超细晶材料,采用有限元法模拟了不同尺寸挤压件的1、2道次等径角挤压过程,得到了各挤压件的等效应变、等效应力和载荷曲线.分析得出:挤压件尺寸对等效应变的大小和分布以及等效应力的大小影响甚微;但随着挤压件尺寸的增大,等效应力和2道次等效应变的分布均匀性降低,挤压载荷增大.这表明:经过多道次等径角挤压的大尺寸挤压件可以获得晶粒分布均匀的大块体超细晶材料.  相似文献   

12.
对采用近液相线半连续铸造方法制备的6063铝合金半固态坯料进行了热模拟压缩试验。根据试验获得的不同温度与应变速率下的应力-应变曲线,采用有限元软件DEFORM-3D对温度为615~625℃、应变速率为0.1~5.0s-1、最大变形程度为60%条件下的半固态铝合金反挤压成形过程进行了数值模拟。研究了变形程度、变形温度、凸模速度、摩擦因数对成形过程的影响,并对变形工艺参数进行了优化。结果表明,随着变形程度增大,处于大变形区内的材料流动速度与方向变化明显,小变形区也逐渐参与变形,变形的不均匀性更加明显。随凸模速度的增大,坯料流动速度加快,整个变形的不均匀程度加剧,对成形不利。随着变形温度的升高,处于大变形区内的材料等效应变明显增大,而材料各点的等效应力均有所减小。摩擦条件对材料变形的影响不显著。  相似文献   

13.
本文基于大变形弹塑性有限元法,采用ANSYS/LS—DYNA软件对T42态2024铝合金普通挤压及静液挤压成形过程进行数值模拟研究,得到不同模角及挤压比对两种不同变形工艺下应力、应变分布和挤压压力的影响规律。模拟结果表明,静液挤压工艺因坯料与模具之间的摩擦因数的显著降低而有助于降低挤压压力及减少裂纹,最佳模角下所需挤压压力和裂纹产生概率最低。  相似文献   

14.
研究将普通挤压和等通道角挤压工艺结合而开发出的新型复合挤压工艺。采用有限元技术建立具有不同摩擦系数和不同转角的模型,模拟镁合金复合挤压过程,分析复合挤压力变化特征,以及挤压过程的应变累积情况。结果表明,摩擦系数增大或者通道角减小,复合挤压的挤压力和等效应变增加。摩擦和转角均会引起变形的不均匀性,摩擦因数越大,通道转角越小,其不均匀性越大。在摩擦因数为0.3,通道转角为120°时可以获得较大且均匀的等效应变。  相似文献   

15.
In718合金反挤压成形数值模拟   总被引:2,自引:1,他引:1  
本文基于粘塑性材料模型,应用有限元模拟技术对In718合金高温下的反挤压成形过程进行了数值模拟。分析了不同挤压工艺的金属流变行为和应力应变分布,得出:在高温条件下,In718合金进行等温反挤压,成形质量较好;摩擦不仅降低反挤压成形范围,并且加剧金属表面裂纹的产生;坯料的等效应力分布较均匀,最大等效应力值出现在凸模工作带端点处;无摩擦、凸模球心夹角=60°、反挤压成形温度T=1000℃时得到的等效应变值比较均匀,产品成形质量相对较好。  相似文献   

16.
针对内花键反挤压成形时出现的凸模断裂问题,通过对凸模进行断裂分析,得出断裂的原因为:内花键成形时挤压力较大,阶梯凸模圆角过渡处应力集中,该部位等效应力值为3800 MPa,超过凸模材料ASSAB88的抗弯强度3500 MPa,从而导致凸模在该处产生脆性折断。为避免凸模的早期失效,提出采用组合凸模来避免阶梯凸模圆角过渡处的应力集中问题,数值模拟结果显示,组合凸模工作时无应力集中,成形部分等效应力值约为3150 MPa。生产实践表明,组合凸模可避免凸模的早期失效。  相似文献   

17.
等径角挤压过程的计算机模拟   总被引:1,自引:0,他引:1  
等径角挤压可以在不改变材料横截面的情况下使其反复产生严重的塑性变形,从而降低材料的晶粒尺寸,是制备块体超细晶材料的新工艺。该文采用DEFORM程序对等径角挤压过程进行了模拟,分析了挤压过程中材料的应力、应变、挤压力等的变化及其分布,为今后的研究打下了基础。  相似文献   

18.
新SIMA法制备铝合金3A21半固态坯料   总被引:1,自引:0,他引:1  
利用有限元模拟软件模拟不同路径下等径角挤压过程,分析材料等效应变分布情况,通过等径角挤压实验、半固态等温处理实验、金相显微镜、金相检验软件系统等实验方法和分析设备,研究铝合金3A21半固态坯料显微组织晶粒尺寸同等效应变的关系,分析不同工艺参数对晶粒等积圆直径和形状系数的影响。结果表明,随着材料经过ECAE后等效应变的增大,半固态坯料晶粒尺寸减小;随着保温时间的延长,晶粒尺寸增大、圆整度增加。  相似文献   

19.
钟兵 《热加工工艺》2012,41(13):127-129
运用DEFORM-3D有限元分析软件模拟了AZ31镁合金保温杯内筒反挤压过程,分析了温度和挤压速度对AZ31镁合金反挤压过程中的等效应力、挤压力的影响。模拟结果表明:凸模圆角处的等效应力值最大;随着温度的升高,所需要的最大挤压力变小;挤压速度越大,最大挤压力越大。  相似文献   

20.
微型正挤压尺度效应实验研究   总被引:2,自引:1,他引:1  
为研究晶粒尺寸对微型正挤压工艺的影响,设计了微成形实验,在常温下对具有不同晶粒尺寸的微型铜圆柱体坯料进行了微型正挤压成形,获得了微小尺度下材料流动的特点及相关实验参数。所得实验结果表明,随着晶粒尺寸的增大,成形实验的可重复性变差,即材料出现非均匀流动;凸模的单位压力逐渐减小,但是成形过程中成形力变化趋势并不随晶粒尺寸的变化而变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号