首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 148 毫秒
1.
以FCC汽油为原料,在中型试验装置上考察了230~400 ℃范围内硫化温度对MoCo/Al2O3催化剂加氢脱硫率及烯烃加氢饱和率、辛烷值损失性能的影响。结果表明在260 ℃反应温度下,随着硫化温度的提高,加氢脱硫率由84.4%逐步提高到91.1%;在280 ℃反应温度下,随着硫化温度的提高,加氢脱硫率维持在96.0%以上基本不变。在上述两种情况下,250 ℃硫化催化剂烯烃加氢饱和率最低,辛烷值损失最小。表明250 ℃硫化催化剂加氢脱硫选择性最好。250 ℃下硫化充分且碳含量较少是FCC汽油加氢脱硫选择性最好的原因。  相似文献   

2.
生产硫质量分数不大于10μg/g的超低硫汽油是国内外清洁汽油发展的大趋势。催化裂化(FCC)汽油是国内外车用清洁汽油的主要调合组分,降低FCC汽油硫含量是生产超低硫汽油的关键。无论FCC汽油选择性加氢脱硫或吸附脱硫技术,生产超低硫汽油的主要问题是产品RON损失较大。抚顺石油化工研究院通过活性金属含量的改变、添加助剂、载体改性等,开发出了新一代高加氢脱硫选择性、低烯烃加氢饱和活性的ME-1催化剂。ME-1催化剂与参比剂相比,在反应温度低10℃的情况下,重馏分烯烃饱和率减少22.9%~32.4%,RON少损失1.3~1.6个单位,因此,用ME-1催化剂生产超低硫汽油时,产品RON损失大大减少。FCC原料预处理技术与采用新一代催化剂的FCC汽油选择性加氢脱硫技术组合是在辛烷值损失更低的情况下生产超低硫汽油的科学、经济的技术方案。  相似文献   

3.
通过FCC重汽油馏分加氢脱硫-辛烷值恢复两段工艺的温度条件实验,表明随反应温度升高,加氢脱硫单元中产物硫含量降低,烯烃含量降低,265 ℃后烯烃含量降幅增大,与原料相比降低29.4%;辛烷值恢复单元可使加氢脱硫产物的硫进一步得以脱除,在370 ~375℃,随温度升高,硫含量下降趋势明显,产物的烯烃含量较加氢脱硫产物进一步降低,随温度升高,烯烃含量小幅降低,365℃后,烯烃体积分数低于18%;对于硫质量分数770 μg/g的FCC汽油,在生产国Ⅳ标准汽油时,重汽油馏分加氢脱硫-辛烷值恢复两段工艺适宜的一反/二反温度为250~265℃/365℃.  相似文献   

4.
FCC汽油加氢脱硫及芳构化催化剂的设计与验证   总被引:3,自引:0,他引:3  
分析了FCC汽油中各种烯烃的加氢饱和对汽油辛烷值的影响,其中支链化程度不高且碳数大于6的烯烃的加氢饱和是FCC汽油加氢后辛烷值降低的主要原因。探讨了提高FCC汽油辛烷值的各种反应,提出了在研制FCC汽油加氢脱硫催化剂时,应考虑催化剂的异构化、芳构化、氢转移、烷基化和选择性裂化等功能;通过提高烯烃和烷烃的支链化度,将部分烯烃转化为高辛烷值的芳烃,或将低辛烷值的正构烃类选择性异构等措施,达到保持加氢FCC汽油辛烷值的目的,并对研制的催化剂进行了验证。  相似文献   

5.
氮对催化裂化汽油中烯烃加氢饱和反应的影响   总被引:1,自引:0,他引:1  
 采用硅胶吸附脱除原料中氮化物,得到氮含量不同而硫含量及烃类组成基本相同的4种催化裂化汽油原料。为了考察氮化物对催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应(HYDO)的影响,在反应温度285 ℃、氢分压1.6 MPa、体积空速4.0 h-1及氢油体积比400的条件下,采用Co-Mo/Al2O3催化剂在中型固定床试验装置上进行了4种催化裂化汽油原料选择性加氢脱硫试验。结果表明,在催化裂化汽油选择性加氢脱硫过程中,氮化物对HYDO有明显的抑制作用;对直链烯烃和环烯烃加氢饱和反应抑制作用明显,但对支链烯烃加氢饱和反应抑制作用较小。硫含量和烃类组成相同的原料,烯烃饱和率相同时,氮含量较高的原料加氢产物研究法辛烷值比氮含量较低的原料加氢产物研究法辛烷值损失小。  相似文献   

6.
最小辛烷值损失的全馏分FCC汽油脱硫技术   总被引:1,自引:0,他引:1  
彭成华  沈炳龙  岳大永  沈雁君 《石油化工》2004,33(Z1):1496-1498
研制出以新型催化材料二氧化钛为载体的选择性加氢脱硫催化剂HDOS-02,对于FCC汽油加氢具有良好的加氢脱硫选择性及其辛烷值保持能力,并通过了CDOS-FR全馏分FCC汽油加氢脱硫降烯烃过程的中型试验.以中石化安庆分公司FCC/DCC汽油为原料,通过CDOS-FR处理后的汽油中硫的脱除率为80~95%,烯烃饱和率为20%~30%,相应汽油辛烷值基本没有损失;处理后的汽油硫质量分数全部小于1.5×10-4,达到了汽油规格欧Ⅲ标准.  相似文献   

7.
对中国石油天然气股份有限公司的3家炼油厂FCC汽油进行了窄馏分切割,对窄馏分总硫含量和烯烃含量进行了对比分析,在保证轻汽油总硫质量分数不大于50μg/g的前提下,将FCC汽油中小于105℃的高烯烃馏分尽可能多地切入轻汽油中,减少重汽油加氢脱硫过程中由于烯烃饱和导致的辛烷值损失。对预加氢前后FCC汽油的辛烷值损失进行了对比,结果表明,FCC汽油经预加氢后,可显著提高重汽油切割点,减少辛烷值损失。  相似文献   

8.
FCC汽油选择性加氢脱硫催化剂的研制   总被引:2,自引:1,他引:1  
通过对传统加氢脱硫催化剂加以改进,研制出一种FCC汽油深度选择性加氢脱硫催化剂CoMoNi/Al2O3-SiO2。催化剂活性评价结果表明,该催化剂具有较高的脱硫活性和较低的烯烃饱和活性,在压力1.5MPa、反应温度230℃、氢油比300:1、空速2.0h-1的条件下,脱硫率达到93.4%,总硫含量由442.3μg/g降低到29.2μg/g,辛烷值损失仅为0.7个单位。1500h稳定性试验结果表明,催化剂具有良好的活性稳定性。  相似文献   

9.
针对企业对汽油产品质量升级的迫切需要,参照国Ⅳ汽油标准中硫含量和烯烃含量指标要求,在实验室采用实沸点蒸馏仪以65℃为切割点,将FCC汽油切割为轻重汽油馏分,采用一种FCC汽油选择性加氢脱硫—辛烷值恢复组合技术,对大于65℃重馏分汽油进行加氢改质试验,将轻汽油和加氢改质后的重汽油调合得到调合加氢汽油,以研究FCC汽油生产国Ⅳ汽油的工艺条件和可行性.试验结果表明,选择性加氢脱硫催化剂的脱硫活性较高,在230℃时可达到95%的脱硫率,加氢产品芳烃体积分数平均提高2%.装置运转1000h的试验结果表明,在氢油比为300:1,压力为1.5 MPa,空速为2.6 ~3.1 h-1,一反温度为220~243℃,二反温度为350~370℃时,可得到合格的国Ⅳ汽油产品,其辛烷值损失较小,最大为1.0个单位,辛烷值恢复催化剂具有较好的活性和稳定性.  相似文献   

10.
以典型的FCC汽油重馏分为原料,在Co-Mo/Al_2O_3催化剂上进行选择性加氢脱硫试验。结果表明,烯烃加氢饱和是导致汽油加氢后辛烷值下降的主要原因。按照烯烃加氢后辛烷值损失的大小,将其分成五类。五类烯烃加氢饱和后辛烷值损失由大到小的顺序是:直链内烯烃〉直链端烯烃〉C_(7+)单支链烯烃〉环烯烃〉多支链和C_5、C_6支链烯烃。建立了烯烃变化量与辛烷值损失量的关联式,可以预测加氢汽油辛烷值的损失。  相似文献   

11.
采用高分辨透射电镜(TEM)对工业催化裂化汽油选择性加氢脱硫MoCo/Al2O3催化剂(参比剂)与中国石化抚顺石油化工研究院(FRIPP)开发的ME-1催化剂进行了硫化态催化剂的MoS2相形貌表征。结果表明:ME-1催化剂活性中心MoS2垛层数为3.0~6.0,而参比剂MoS2垛层数为5.0~10.0,表明ME-1催化剂中活性金属组分的分散度较高。重汽油加氢脱硫活性与选择性小型评价结果表明,加氢脱硫产物达到硫质量分数小于10 μg/g时,ME-1催化剂所需反应温度比参比剂低10 ℃,烯烃饱和率减少32.2%,RON损失减少1.6个单位,具有更高的加氢脱硫活性和选择性。ME-1催化剂的工业应用结果表明,将FCC汽油硫质量分数由466 μg/g降至9.7 μg/g时,RON损失1.75个单位,表明ME-1催化剂可满足生产“无硫汽油”的需要。  相似文献   

12.
Mo_2N催化剂加氢脱硫性能的研究   总被引:3,自引:0,他引:3  
在中压反应装置中以环己烷69%(m),环己烯20%(m),苯10%(m),噻吩1%(m)混合液为反应物,考察了不同比表面Mo2N的加氢脱硫(HDS)、环己烯加氢(HYD)和苯加氢(BHD)的活性。表面积大的催化剂,HDS、HYD活性均高,但若用比活性比较,则刚好相反。在一较宽温度范围内测试Mo2N催化性能,HDS和HYD活性随温度升高而增加,但各温区变化幅度差异较大。对Mo2N催化剂采用3种预处理方法:(1)400℃下H2还原;(2)400℃下H2S/H2硫化;(3)不处理。结果表明,HDS和HYD活性顺序为预还原>不处理>预硫化。预还原处理的Mo2N具有接近硫化态商品NiCoMo/Al2O3的催化剂性能,此催化剂具有良好的应用前景  相似文献   

13.
制备了CoMo/La_2O_3-Al_2O_3选择性加氢脱硫催化剂,通过BET,XRD,H2-TPR,XPS,TEM对催化剂进行了表征,并在固定床连续微型反应装置上考察了La_2O_3含量对催化剂活性的影响。结果表明:La的引入可以改善活性组分与载体间的相互作用,有利于金属活性组分的还原,提高了Mo的硫化程度,增加了CoMoS活性相的数量;当La_2O_3质量分数为1.0%时,催化剂有最佳的选择性加氢脱硫活性,在处理FCC汽油重馏分(65℃馏分)时可将其硫质量分数降至11.2μg/g,RON损失1.1个单位;与碱洗轻馏分调合后,产品硫质量分数为9.0μg/g,RON损失0.8个单位。  相似文献   

14.
通过对传统Al_2O_3载体加以改进,研制出一种FCC汽油深度选择性加氢脱硫催化剂CoMoNi/Al_2O_3-SiO_2。该剂具有较高的脱硫活性和较低的烯烃饱和活性,在压力1.5 MPa、反应温度230℃、氢油体积比300:1、空速2.0h~(-1)的条件下,脱硫率达到93.4%,总硫质量分数由439.3μg/g降低到29.1μg/g,辛烷值损失仅为0.7个单位。  相似文献   

15.
采用固定床微反装置对一工业CoMo/Al2O3催化剂在不同压力下进行硫化,并对硫化态催化剂进行了加氢脱硫活性评价;借助高分辨透射电镜(TEM)、X射线光电子能谱(XPS)等手段对硫化态催化剂进行了表征。TEM结果表明,随着硫化压力的升高,MoS2片晶的堆积层数和长度均有所增加,有利于减弱活性金属与载体间的强相互作用。XPS结果表明,随着硫化压力的升高,催化剂的硫含量以及硫化程度均逐渐增大,有利于催化剂活性的提高。此外,4.0 MPa压力下反应18 h后催化剂的XPS表征结果表明,由于反应压力比硫化压力有所提高,对催化剂存在补充硫化的作用。催化剂活性评价结果证实了TEM与XPS表征结果,在硫化压力4.0 MPa、反应温度360 ℃时催化剂的加氢脱硫活性最高,脱硫率达到99.5%。  相似文献   

16.
为了满足国Ⅴ、国Ⅵ排放标准清洁汽油生产需求,开发了一种富芳烃汽油深度加氢脱硫催化剂。通过在金属浸渍液中引入一定比例的有机络合剂制备了高脱硫活性的Ni-Mo/Al_2O_3催化剂,催化剂微反评价结果表明,在反应温度245℃、反应压力2.0 MPa、体积空速1.5h~(-1)、氢油体积比300的条件下,可以将某石化公司富芳烃汽油的硫质量分数从740μg/g降至小于5.0μg/g,脱硫率达99.3%,辛烷值损失在1.0个单位以内,催化剂表现出较高的加氢脱硫活性,满足工业装置清洁汽油生产要求。  相似文献   

17.
针对加氢脱硫技术(HDS)存在的操作条件苛刻、装置投资及操作费用高等缺点,无锡蓝星石化公司与西南石油大学合作,采用后者研制的催化剂SW-Ⅰ对无锡蓝星石化公司FCC汽油进行烷基化脱硫中试试验研究。在SW-Ⅰ催化剂用量0.61%、反应温度60 ℃、压力0.5~0.8 MPa、空速3.77 h-1的条件下,100 mL催化剂SW-Ⅰ可处理原料油27.5 L,烷基化脱硫汽油的硫含量为191 μg/g、收率为87.90%,。将烷基化脱硫汽油与直馏汽油、C9芳烃以及MTBE按质量比67:15:10:8调合生产车用汽油,调合汽油RON为93.4,密度为0.721 5 g/cm3,硫含量为142 μg/g,硫含量符合国Ⅲ标准。与HDS相比,FCC汽油烷基化脱硫技术工艺流程简单、操作条件缓和、不损耗辛烷值、装置投资及操作费用低、能耗低,具有一定的工业应用前景。  相似文献   

18.
以来源于炼油企业的60 ~140 ℃馏分的FCC汽油和工业硫磺为原料,在多种碱性催化剂作用下合成了系列多硫烯烃并对其进行了纯化,对合成反应和纯化反应可能的历程进行了分析,对合成反应条件进行了优化,对多硫烯烃的热分解行为进行了研究。结果表明:以氢氧化钠为催化剂,在反应温度为170 ℃、反应时间为3 h、硫磺与FCC汽油质量比为0.45:1、催化剂与FCC汽油质量比为0.15:1的条件下,合成的多硫烯烃的硫质量分数为29.47%,密度(20 ℃)为0.953 g/cm3,且油溶性好、分解温度范围较宽(190~260 ℃)。合成产物技术指标达到硫化剂要求,可应用于加氢催化剂的预硫化处理,具有工业应用前景。  相似文献   

19.
研究LTAG技术中LCO加氢深度对催化裂化反应的影响,结果表明,LCO加氢深度对催化裂化反应的影响明显,适当控制LCO加氢深度,尽可能将LCO中的多环芳烃加氢转化为单环芳烃,可使催化裂化得到高收率的高辛烷值汽油。中试实验结果表明,采用NiMoW/Al_2O_3催化剂对LCO进行加氢处理,可以在多环芳烃饱和率达80%以上的同时保持较高的单环芳烃选择性。工业应用结果表明:以多环芳烃质量分数为68.7%~69.3%的LCO为原料进行加氢处理,多环芳烃饱和率达81.5%~81.8%,单环芳烃选择性达81.0%~82.3%,实现了高多环芳烃饱和率下的高单环芳烃选择性;以此加氢LCO作为催化裂化进料,催化裂化汽油的收率提高10百分点,汽油辛烷值RON提高1个单位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号