首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张明明  王颀  井冲  霍宗亮 《电子学报》2020,48(2):314-320
数据保持力是NAND闪存重要的可靠性指标,本文基于用户在使用模式下,通过设计测试方法,研究了电荷捕获型3D NAND闪存初始阈值电压-2V至3V的范围内数据保持力特性.结果表明初始状态为编程态时,可以有效降低NAND闪存高温数据保留后的误码率,特别是随着擦写次数的增加,不同初始状态下电荷捕获型3D NAND闪存数据保持力差异更加明显,结论表明闪存最适宜存放的状态为0-1V,电荷捕获型3D NAND闪存器件应避免长期处于深擦除状态.并基于不同初始状态闪存高温数据保留后的数据保持力特性不同的现象进行了建模和演示,通过设计实验验证,机理解释模型符合实验结果.该研究可为电荷捕获型3D NAND闪存器件的长期存放状态提供理论参考.  相似文献   

2.
A 512-kb flash EEPROM developed for microcontroller applications is reported. Many process and performance constraints associated with the conventional flash EEPROM have been eliminated through the development of a new flash EEPROM cell and new circuit techniques. Design of the 512-kb flash EEPROM, which is programmable for different array sizes, has been evaluated from 256- and 384-kb arrays embedded in new 32-b microcontrollers. The 512-kb flash EEPROM has incorporated the newly developed source-coupled split-gate (SCSG) flash EEPROM cell, Zener-diode controlled programming voltages, internally generated erase voltage, and a new differential sense amplifier. It has eliminated overerase and program disturb problems without relying on tight process controls and on critical operational sequences and timings, such as intelligent erase, intelligent program, and preprogram before erase. A modular approach was used for chip design to minimize development time and for processing technology to achieve high manufacturability and flexibility  相似文献   

3.
A 32 Mb NAND type flash EEPROM has been developed with 0.425 μm CMOS technology. A 35 ns cycle time is achieved by adopting a pipeline scheme. A boosted word-line scheme and a program verify operation achieving tight threshold voltage (Vth) distribution of programmed cells reduce read-out access time. Multiple block erase operation is realized by adopting erase block registers. All functions are operable with a single 5.3 V or 5 V power supply  相似文献   

4.
Nonvolatile SONOS memory cells, fabricated by standard flash EEPROM technology are characterized, in comparison with floating gate memory devices. Its programming speed is comparable with the state-of-the-art flash EEPROM cells, while the erase speed is faster and over-erase-free. The SONOS cells do not suffer from the drain turn-on effect, making it is possible to perform parallel multi bit-line programming and to achieve tighter distributions of programmed and erased threshold voltages. These features render SONOS cells attractive for direct utilization in existing flash EEPROM technology with its forward reading scheme  相似文献   

5.
The impact of technological parameter (channel doping, source/drain junction depth) variation and channel length scaling on the reliability of NOR flash EEPROM cells under channel initiated secondary electron (CHISEL) programming is studied. The best technology for CHISEL operation has been identified by using a number of performance metrics (cycling endurance of program/erase time, program/disturb margin) and scaling studies were done on this technology. It is explicitly shown that from a reliability perspective, bitcell optimization for CHISEL operation is quite different from that for channel hot electron (CHE) operation. Properly optimized bitcells show reliable CHISEL programming for floating gate length down to 0.2 /spl mu/m.  相似文献   

6.
In this paper, we provide a methodology to evaluate the hot-carrier-induced reliability of flash memory cells after long-term program/erase cycles. First, the gated-diode measurement technique has been employed for determining the lateral distributions of interface state (Nit) and oxide trap charges (Qox) under both channel-hot electron (CHE) programming bias and source-side erase-bias stress conditions. A gate current model was then developed by including both the effects of Nit and Qox. Degradation of flash memory cell after P/E cycles due to the above oxide damage was studied by monitoring the gate current. For the cells during programming, the oxide damage near the drain will result in a programming time delay and we found that the interface state generation is the dominant mechanism. Furthermore, for the cells after long-term erase using source-side FN erase, the oxide trap charge will dominate the cell performance such as read disturb. In order to reduce the read-disturb, source bias should be kept as low as possible since the larger the applied source erasing bias, the worse the device reliability becomes  相似文献   

7.
Eldridge  J. 《Spectrum, IEEE》1993,30(10):53-54
A nonvolatile, rugged, sequentially accessed flash memory that provides an attractive solid-state alternative to disk drives is described. The advantages of the NAND EEPROM (electrically erasable and programmable read-only memory) for file storage, including mass memory storage, are discussed. Its reliability and cost-effectiveness are considered  相似文献   

8.
A theoretical model is developed to characterise the write, erase and charge retention mechanisms of floating gate EEPROM devices. The model depicts the effect of the properties of thin tunnel oxide, interpoly oxide, injector area, and programming voltage on the device performance. The effect of trapping of electrons in the thin oxide during repeated write/erase cycles is also described.  相似文献   

9.
嵌入在TMS320F2XX片内的闪存(flash memory)是DSP可供开发的片内资源,它具有ROM和传统的闪存、E2PROM不可比拟的优点,但对其编程必须遵守一些特定的规则。本文以F206为例,对闪存编程的编程(清零)规则、擦除规则以及快写规则作了较为详细的描述。  相似文献   

10.
A suitable bird-beak thickness is crucial to the cell reliability. However, the process control for bird-beak thickness in the edge region is very difficult. A new erase method is proposed in this work to modulate the electron tunneling region of 40 nm floating gate NAND flash memory device. The erasing electron can move to gate center from gate edge under back bias at 0.3 V/− 0.8 V. The Fowler-Nordheim (FN) current of erase operation distributes on the whole channel region, not located at the gate edge region. Results show that the proposed method can improve cell reliability about 33%. TCAD analysis is employed to explain and prove the mechanism. This new erase method is promising for scaled NAND flash memory.  相似文献   

11.
An experimental 4-Mb flash EEPROM has been developed based on 0.6-μm triple-well CMOS technology in order to establish circuit technology for high-density flash memories. A cell size of 2.0×1.8 μm2 has been achieved by using a negative-gate-biased source erase scheme and a self-aligned source (SAS) process technology. A newly developed row decoder with a triple-well structure has been realized in accordance with its small cell size. The source voltage during the erase operation was reduced by applying a negative voltage to the word line, which results in a 5-V-only operation. The chip size of the 4-Mb flash EEPROM is 8.11×6.95 mm2, and the estimated chip size of a 16-Mb flash EEPROM is 98.4 mm2 by using the minimal cell size (2.0×10 μm2)  相似文献   

12.
A simplified flash EEPROM process was developed using high-temperature LPCVD oxide both as flash cells interpoly dielectrics and as peripheral transistors gate oxide (decoding logic). An O2 anneal at 850°C lowers charge trapping and interface trap density induced by Fowler-Nordheim injection. However, electron trapping remains slightly higher than with dry thermal oxide. Similar memory charge loss and write-erase endurance are obtained as for ONO-insulated cells. HTO thus proves to have the required quality and reliability to be used in flash EEPROMs  相似文献   

13.
High‐performance top‐gated organic field‐effect transistor (OFET) memory devices using electrets and their applications to flexible printed organic NAND flash are reported. The OFETs based on an inkjet‐printed p‐type polymer semiconductor with efficiently chargeable dielectric poly(2‐vinylnaphthalene) (PVN) and high‐k blocking gate dielectric poly(vinylidenefluoride‐trifluoroethylene) (P(VDF‐TrFE)) shows excellent non‐volatile memory characteristics. The superior memory characteristics originate mainly from reversible charge trapping and detrapping in the PVN electret layer efficiently in low‐k/high‐k bilayered dielectrics. A strategy is devised for the successful development of monolithically inkjet‐printed flexible organic NAND flash memory through the proper selection of the polymer electrets (PVN or PS), where PVN/‐ and PS/P(VDF‐TrFE) devices are used as non‐volatile memory cells and ground‐ and bit‐line select transistors, respectively. Electrical simulations reveal that the flexible printed organic NAND flash can be possible to program, read, and erase all memory cells in the memory array repeatedly without affecting the non‐selected memory cells.  相似文献   

14.
本文从EEPROM的简单的理论入手,引入了EEPROM器件的可靠性的概念。从“点”:隧道氧化层的评估(QBD实验)──“线”(擦/写实验)──“面”(加速保持特性实验)全面综合评估了EEPROM的可靠性。从中得到要保证EEPROM的可靠性的关键是要尽量减少隧道氧化层中的可动电荷和缺陷密度,如此才能保证它的“擦/写”质量,改善它的保持和耐久特性。  相似文献   

15.
The effects of an N2O anneal on the radiation effects of a split-gate electrical erasable programmable read only memory (EEPROM)/flash cell with a recently-proposed horn-shaped floating gate were studied. We have found that although the cells appear to survive 1 Mrad(Si) Co60 irradiation without data retention failure, the write/erase cycling endurance was severely impeded after irradiation. Specifically, the write/erase cycling endurance was degraded to 20 K from the pre-irradiation value of 50 K. However, by adding an N2 O annealing step after the interpoly oxidation, the after-irradiation write/erase cycling endurance of the resultant cell can be significantly improved to over 45 K. N2O annealing also improves the after-irradiation program and erase efficiencies. The N2O annealing step therefore presents a potential method for enhancing the robustness of the horn-shaped floating-gate EEPROM/flash cells for radiation-hard applications  相似文献   

16.
A flash memory with a lightly doped p-type floating gate is proposed, which improves charge retention and programming/erase (P/E) Vth window. Improvement in P/E window is enhanced for cells with smaller capacitance coupling ratio, which is important for future scaled flash memory cells. Both device simulation and experimental verification are presented.  相似文献   

17.
The cycling induced interface states in floating-gate EEPROM cells are reliably extracted by implementing accurate program/erase stresses in the reference cell. The interface states measured directly from the memory cell via charge pumping are shown different from those obtained conventionally from the reference cell. The reasons for these different levels of extraction are elucidated and a new method is presented for accurate determination of interface trap density. The technique is based on introducing the equivalent gate voltage with offset voltage at the reference cell by which to simulate realistically the cycling stresses as occur in the flash memory cell itself.  相似文献   

18.
A 70 nm 16 Gb 16-Level-Cell NAND flash Memory   总被引:1,自引:0,他引:1  
A 16 Gb 16-level-cell (16LC) NAND flash memory using 70 nm design rule has been developed . This 16LC NAND flash memory can store 4 bits in a cell which enabled double bit density comparing to 4-level-cell (4LC) NAND flash, and quadruple bit density comparing to single-bit (SLC) NAND flash memory with the same design rule. New programming method suppresses the floating gate coupling effect and enabled the narrow distribution for 16LC. The cache-program function can be achievable without any additional latches. Optimization of programming sequence achieves 0.62 MB/s programming throughput. This 16-level NAND flash memory technology reduces the cost per bit and improves the memory density even more.  相似文献   

19.
This paper describes a new write/erase method for flash memory to improve the read disturb characteristics by means of drastically reducing the stress leakage current in the tunnel oxide. This new write/erase operation method is based on the newly discovered three decay characteristics of the stress leakage current. The features of the proposed write/erase method are as follows: 1) the polarity of the additional pulse after applying write/erase pulse is the same as that of the control gate voltage in the read operation; 2) the voltage of the additional pulse is higher than that of a control gate in a read operation, and lower than that of a control gate in a write operation; and 3) an additional pulse is applied to the control gate just after a completion of the write/erase operation. With the proposed write/erase method, the degradation of the read disturb life time after 106 write/erase cycles can be drastically reduced by 50% in comparison with the conventional bipolarity write/erase method used for NAND type flash memory. Furthermore, the degradation can he drastically reduced by 90% in comparison with the conventional unipolarity write/erase method fur NOR-, AND-, and DINOR-type flash memory. This proposed write/erase operation method has superior potential for applications to 256 Mb flash memories and beyond  相似文献   

20.
提出了一种用于半导体闪速存储器单元的新的Si/SiGe量子点/隧穿氧化层/多晶硅栅多层结构,该结构可以实现增强F-N隧穿的编程和擦除机制.模拟结果表明该结构具有高速和高可靠性的优点.测试结果表明该结构的工作电压比传统NAND结构的存储器单元降低了4V.采用该结构能够实现高速、低功耗和高可靠性的半导体闪速存储器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号