首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
段新燕  刘娟 《热加工工艺》2014,(17):223-225
对镁铝异种金属进行扩散焊接,分别研究了直接焊接和加Zn中间层焊接。通过SEM、EDS、XRD和万能试验机对焊接接头进行结构和性能表征。结果表明,Mg-Al直接焊接时主要生成了Al3Mg2和Al12Mg17金属间化合物相,接头剪切强度随保温时间增加先增加后减小,焊接温度440℃、保温时间100 min时,Mg-Al焊接接头剪切强度达到26.1 MPa。Mg-Zn-Al焊接接头避免了Mg-Al系金属间化合物的生成,界面主要由Mg-Zn共晶层、MgZn化合物层和Al-Zn固溶层组成,接头剪切强度达到38.5 MPa。  相似文献   

2.
采用钛箔作为中间层扩散连接Ti3Al与Ti2AlNb,利用SEM,EDS和XRD等分析方法发现,接头界面组织结构为Ti3Al/α+β双相组织/富B2相/Ti2Al Nb.分别研究了中间层厚度,连接温度,保温时间等工艺参数对接头界面组织形貌以及力学性能的影响.结果表明,当钛箔厚度10μm,T=900℃,t=120 min,p=5 MPa时,接头组织性能最佳.钛箔厚度增加会导致Ti,Al,Nb等元素扩散不均匀;Ti3Al/Ti2Al Nb直接固相扩散连接温度为1 000℃,加入钛中间层可将其降低至900℃,减小了高温热循环对母材性能的损伤,接头整体抗拉强度从795 MPa提升至906MPa;保温时间90~120 min可保证扩散充分连接可靠.  相似文献   

3.
研究了6082铝合金和TC4钛合金分别添加钎料锌和镍下的搅拌摩擦钎焊(FSB)搭接接头微观组织及焊后热处理后接头界面金属间化合物(IMC)的生成种类和先后顺序以及生长动力学模型。研究表明:添加钎料锌时,界面金属间化合物主要由AlZn、TiAl、TiAl2、TiAl3组成,先后顺序为TiAl2→TiAl3→TiAl→AlZn,并获得了界面IMC层的生长动力学模型为;添加钎料镍时,界面金属间化合物层主要由TiNi、Al3Ni2、Ti3Al和TiAl组成,先后顺序为776 K以下,Ti-Ni-Al焊接界面金属间化合物形成的顺序是Al3Ni2→TiNi→TiAl→Ti3Al,776 K以上时生成顺序为Al3Ni2→TiNi→Ti3Al→TiAl,并获得了界面IMC层的生长动力学模型。界面IMC层的厚度均随着温度的提高或保温时间的延长而增加。添加锌的接头的剪切强度由未热处理时的154 MPa提高到194 MPa,而添加钎料镍的接头由142 MPa提高至166 MPa。  相似文献   

4.
以钴粉/镍箔为复合中间层,采用800,900和1 000 ℃等三种连接温度,加压10 MPa并保温120 min的工艺条件,对钨/钢真空扩散连接. 研究了接头的微观组织、成分分布、力学性能及断口特征. 结果表明,连接温度为800 ℃和900 ℃时,钨/中间层界面金属间化合物生成很少,对应接头抗剪强度分别为186 MPa和172 MPa,断口均位于钨母材中近界面的位置,为典型解理断裂形貌;当连接温度升至1 000 ℃时,钨/中间层界面生成厚度小于2 μm的连续金属间化合物层,接头抗剪强度降至115 MPa,断裂也发生在钨母材中近界面的位置,断口大部分区域为沿晶断裂特征.  相似文献   

5.
TiAl/Ni基合金反应钎焊接头的微观组织及剪切强度(英文)   总被引:1,自引:0,他引:1  
以Ti为中间层,对TiAl基金属间化合物与Ni基高温合金进行反应钎焊连接,研究反应钎焊接头的界面微观结构及剪切强度。通过实验发现,熔融中间层与两侧母材反应剧烈,生成连续的界面反应层。典型的界面微观结构为GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl。当钎焊温度为1000°C,保温时间10min时,所得接头的剪切强度最高为258MPa。进一步升高钎焊温度或延长保温时间,会引起钎缝组织中组成相粗化和脆性金属间化合物层的生成,从而导致接头剪切强度的降低。  相似文献   

6.
采用Cu作中间层对工业纯钛和1Cr18Ni9不锈钢进行了脉冲加压扩散连接。在连接温度850℃,脉冲压力8~20 MPa工艺条件下,在120~180 s时间内即实现了钛与不锈钢的有效连接,与传统扩散焊相比连接时间大幅缩短。在Ti/Cu界面生成了大量的Ti-Cu金属间化合物;而在Cu/不锈钢界面只生成了Cu在奥氏体不锈钢中的固溶体,Cu中间层有效地阻隔了Ti与不锈钢之间的扩散和反应。在连接时间为120 s时得到了最大的连接强度346 MPa。在拉伸载荷下,接头沿Ti/Cu界面发生脆性断裂。脉冲加压扩散连接能在一定程度上降低界面金属间化合物对接头性能的有害作用,提高接头强度,但不能完全消除界面金属间化合物对接头的不利影响。  相似文献   

7.
采用Cu作中间层对工业纯钛和1Cr18Ni9不锈钢进行了脉冲加压扩散连接。在连接温度850 ℃,脉冲压力8~20 MPa工艺条件下,在120~180 s时间内即实现了钛与不锈钢的有效连接,与传统扩散焊相比连接时间大幅缩短。在Ti/Cu界面生成了大量的Ti-Cu金属间化合物;而在Cu/不锈钢界面只生成了Cu在奥氏体不锈钢中的固溶体,Cu中间层有效地阻隔了Ti与不锈钢之间的扩散和反应。在连接时间为120 s时得到了最大的连接强度346 MPa。在拉伸载荷下,接头沿Ti/Cu界面发生脆性断裂。脉冲加压扩散连接能在一定程度上降低界面金属间化合物对接头性能的有害作用,提高接头强度,但不能完全消除界面金属间化合物对接头的不利影响。  相似文献   

8.
TiAl/V/Cu/40Cr钢扩散连接界面组织结构对接头强度的影响   总被引:6,自引:0,他引:6  
扩散连接界面组织结构是影响连接性能的关键因素,不同的界面组织结构及生成相所决定的接合强度不同,研究了TiAl/V/Cu/40Cr钢的扩散连接,结果显示,在V/Cu及Cu/40Cr的连接界面处出现了对连接性能有利的无限固溶体层,而在TiAl/V界面处有金属间化合物层出现,接头全部断裂于TiAl/V界面处,TiAl/V界面生成的金属间化合物V5Al8脆性相严重弱化了接头性能,使接头强度仅为200MPa。  相似文献   

9.
将CuW假合金表面部分Cu腐蚀掉,预留100-200μm厚度的W骨架,随后通过化学镀在W骨架上形成多孔结构Ni扩散层,最后在700℃下用固-液连接的方法制备出CuW/Al整体材料。比较了不同保温时间下界面扩散区域微观组织结构,分析了界面扩散溶解层金属间化合物析出序列。结果表明,CuW/Al界面间多孔结构Ni中间层可有效抑制柱状Al2Cu相的生成和柯肯达儿孔洞裂纹的产生,界面处生成物主要以Al2Cu和 Al5W化合物为主。添加多孔结构Ni中间层可提高CuW/Al界面结合性能和电导率。  相似文献   

10.
在低温下,利用Ag箔作中间层对Ti-6Al-4V钛合金(TC4)和无氧铜(OFC)进行了扩散焊接。结果表明Ag箔中间层阻止了Ti-Cu金属间化合物的生成,改善了TC4/OFC焊接接头的界面组织结构和焊接强度。同时,Ag箔中间层的添加也降低了TC4/OFC接头的焊接温度。焊接界面从TC4侧到OFC侧依次是TC4基体,AgTi金属间化合物,Ag中间层,Ag-Cu固溶体和OFC基体。在工艺条件:T=700℃,P=10 MPa,t=60 min下,TC4/Ag/OFC焊接接头的抗拉强度为150 MPa,其值高于直接焊接时的抗拉强度。焊接接头断裂发生在Ag/OFC界面,并且呈韧性断裂。我们可以推测AgTi化合物的韧性性能优于Ag-Cu固溶体。  相似文献   

11.
In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal.The microstructural analyses indicate that two reaction products, Ti ( Cu, Al ) 2 and Ag bused solid solution ( Ag ( s. s ) ) , are present in the brazing seam, and the iuterface structure of the brazed joint is TiB2/TiB2 Ag ( s. s ) /Ag ( s. s ) Ti ( Cu,Al)2/Ti( Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases us thebrazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.  相似文献   

12.
SiC/TiAl扩散连接接头的界面结构及连接强度   总被引:10,自引:4,他引:6       下载免费PDF全文
对常压烧结的SiC陶瓷与TiAl金属间化合物进行了真空扩散连接。采用扫描电镜、电子和X射线衍射分析等确定了反应产物的种类和接头的界面结构,并用拉剪试验评价了接头的连接强度。研究结果表明:SiC与TiAl扩散连接中生成了TiAl2、TiC和T5Si3Cx三种上,接头的界面结构为SiC/TiC/(TiC+Ti5Si3Cx)/TiAl。在1573K和1.8ks的连接条件下,接头室温剪强度达到240MPa  相似文献   

13.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

14.
何鹏  冯吉才  韩杰才  钱乙余 《焊接》2002,(11):15-18
研究了TiAl/Ti/V/Cu/40Cr钢的扩散连接,结果显示:在TiAl/Ti界面处形成了对接头强度有利的Ti3Al TiAl双相层及Ti固溶体层,而Ti/V/Cu/40Cr界面处未出现金属间化合物及其它脆性相,接头最高拉伸强度可达420MPa,接近TiAl母材。  相似文献   

15.
采用Ti/Ni复合中间层实现了TiAl合金和Ti3AlC2陶瓷的扩散连接,利用SEM,XRD等分析方法对接头界面结构进行了分析.结果表明,TiAl/Ti3AlC2接头典型界面结构为TiAl/Ti3Al+Al3NiTi2/Ti3Al/α-Ti+Ti2Ni/Ti2Ni/TiNi/Ni3Ti/Ni/Ni3(Ti,Al)/Ni3Al+TiCx+Ti3AlC2/Ti3AlC2.随着连接温度的升高,TiAl/Ti界面处的Tiss层逐渐减小,Ti3Al化合物层逐渐变厚;TiNi化合物层厚度显著增加,Ti2Ni和Ni3Ti层厚度基本保持不变.接头抗剪强度随连接温度升高先增加后减小,当连接温度为850℃时,接头的抗剪强度最高可达到85.3 MPa.接头主要在Ni/Ti3AlC2界面及Ti3AlC2基体处发生断裂.  相似文献   

16.
In this study,intermetallic TiAl and steel 40Cr diffusion bonded successfully by using a composite barrien layer Ti/V/Cu,In this case,a diphase Ti3Al TiAl layer and a Ti solid solution which enhance the strength of the joint are obtained at the TiAl/Ti interface.The interface of TiAl/Ti/V/Cu/40Cr was free from intermetallic compounds and other brittle phases,and the strength of the joint was as high as 420MPa,very close to that of the TiAl base.This method gives a reliable bonding of intermetallic TiAl and steel 40Cr.  相似文献   

17.
Aluminum and magnesium were joined through diffusion bonding using Ni interlayer. The microstructure and mechanical performance of the Al/Ni/Mg joints at different temperatures was investigated by means of scanning electron microscope(SEM), electro-probe microanalyzer(EPMA), X-ray diffraction(XRD), Vickers hardness testing, and shear testing. The results show that the addition of Ni interlayer eliminates the formation of Mg–Al intermetallic compounds and improves the bonding strength of the Al/Mg joints. The Al/Ni/Mg joints are formed by the diffusion of Al, Ni and Mg, Ni. The microstructure at the joint interface from Al side to Mg side is Al substrate/Al–Ni reaction layer/Ni interlayer/Mg–Ni reaction layer/Mg substrate multilayer structure. The microhardness of the Mg–Ni reaction layer has the largest value of HV 255.0 owing to the existence of Mg_2Ni phase.With the increase of bonding temperature, the shear strength of the joints increases firstly and then decreases.The Al/Ni/Mg joint bonds at 713 K for 90 min, exhibiting the maximum shear strength of 20.5 MPa, which is greater than that of bonding joint bonded directly or with Ag interlayer. The fracture of the joints takes place at the Mg–Ni interface rather than the Al–Ni interface, and the fracture way of the joints is brittle fracture.  相似文献   

18.
以TiAl金属间化合物增压涡轮与 4 0Cr钢轴的扩散连接为背景 ,提出了复合阻隔法扩散连接工艺 ,并探讨了阻隔效应原理 ,建立了从材料的扩散连接性角度出发的原子半径、原子电负性阻隔层选择原则。利用本文的扩散连接阻隔效应原理 ,确定了TiAl金属间化合物增压涡轮与 4 0Cr钢轴的扩散连接复合阻隔层为Ti/V/Cu ,由此得到的扩散连接接头在V/Cu及Cu/ 4 0Cr的连接界面处出现了对连接性能有利的无限固溶体层 ,在TiAl/Ti的接触面上生成了能够强化接头强度的Ti3 Al TiAl双相层和Ti的固溶体层 ,与TiAl/ 4 0Cr直接扩散连接相比 ,Ti/V/Cu复合阻隔层的加入 ,避免了在TiAl/4 0Cr的接触面上TiC、Ti3 Al、FeAl、FeAl2 金属间化合物脆性相的产生 ,接头强度高达4 2 0MPa ,因此利用本文的阻隔效应原理可以很好地进行复合阻隔层的选择  相似文献   

19.
采用纯钛箔做中间层扩散连接TiAl合金与镍基高温合金(GH99).利用扫描电镜、电子探针和X射线衍射等手段对界面产物及接头的界面结构进行分析.结果表明,GH99/Ti界面主要由四个反应层组成,分别为(Ni,Cr)ss,富Ti-(Ni,Cr)ss,TiNi和Ti2Ni.当保温时间较短时,Ti/TiAl界面反应层主要为Ti(Al)ss.延长保温时间,此界面反应层转化为Ti3Al和Al3NiTi2.随着保温时间的延长,TiNi反应层厚度持续增加,而Ti2Ni反应层厚度先增加后减小.随保温时间的延长接头的抗剪强度先增加后减小,然后又增加.由接头断口形貌可以看出,接头主要断裂于Ti2Ni反应层.  相似文献   

20.
TiAl合金与镍基高温合金的扩散连接   总被引:2,自引:2,他引:0       下载免费PDF全文
采用钛为中间层,对TiAl合金与镍基高温合金(GH99)进了扩散连接.研究了扩散连接接头的界面结构和连接温度对界面结构及连接性能的影响,并对连接界面反应层的形成机制进行探讨.结果表明,GH99/Ti/TiAl的界面结构为:GH99/(Ni,Cr)ss/富Ti-(Ni,Cr)ss/TiNi/Ti2Ni/α-Ti+Ti2Ni/Ti(Al)ss/TiAl+Ti3Al/TiAl;随着连接温度的升高,各反应层厚度增加,接头的抗剪强度先增加后减小;在连接温度1 173 K,连接时间30 min,连接压力20 MPa时,抗剪强度最高为260.7 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号