首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以市售大豆异黄酮粉为样品,选用产β-葡萄糖苷酶的LJ-Q2菌种与优化后的固定化β-葡萄糖苷酶进行耦合发酵,采用单因素、响应曲面法对耦合发酵条件进行优化,高效液相法(HPLC)测定大豆异黄酮苷元,考察耦合发酵条件对大豆苷元转化率的影响。研究结果如下:最优条件为温度54℃,耦合时间3 h,初始p H7,固定化酶添加量7%;大豆异黄酮苷元绝对质量13.76 mg,大豆异黄酮苷元转化率为76.8%。对大豆苷制备应用技术开发有参考价值。  相似文献   

2.
黑曲霉发酵法制备大豆异黄酮苷元工艺初探   总被引:2,自引:0,他引:2  
利用能产生β-葡萄糖苷酶的黑曲霉作为菌种,对大豆胚芽进行固态发酵,制备大豆异黄酮苷元。考察了几个主要因素对发酵过程中大豆异黄酮苷元产生量的影响,初步探讨了黑曲霉发酵法制备大豆异黄酮苷元的工艺条件。  相似文献   

3.
用发酵黑曲霉得到的β-葡萄糖苷酶水解40%的大豆异黄酮粉,通过正交实验确定最佳水解条件为:加酶量100u,底物浓度20mg/mL,50℃,水解1h。将水解液降温至4℃,4000r/min离心分离30min,离心后沉淀物在-18℃下预冻,于-40℃冷冻干燥,得到固态大豆异黄酮苷元,经检测苷元转化率90.12%、大豆皂苷3.87%、大豆异黄酮94.36%、大豆苷元43.45%、染料木素46.26%。放大实验结果:苷元转化率78.56%、大豆皂苷4.93%、大豆异黄酮88.97%、大豆苷元36.47%、染料木素38.81%。  相似文献   

4.
固态发酵法制备大豆异黄酮苷元   总被引:2,自引:0,他引:2  
研究了一种能分泌β-葡萄糖苷酶的黑曲霉作为菌种对大豆异黄酮粉进行发酵生产大豆异黄酮苷元的方法,通过单因素及正交试验确立了产β-葡萄糖苷酶的最优培养基配比和水解大豆异黄酮粉的最佳工艺条件,为实现大豆异黄酮苷元的产业化生产提供了参考.  相似文献   

5.
本研究通过测定植物乳杆菌58在不同碳源中的生长和产β-葡萄糖苷酶情况,筛选菌株的最适碳源,并确定接种至豆乳的最佳时间。在接种量、糖含量、发酵时间和发酵温度等单因素实验基础上,根据Box-Behnken中心组合原理进行响应面实验设计,以大豆异黄酮苷元含量为指标,进一步优化菌株58发酵豆乳产大豆异黄酮苷元条件。结果显示,植物乳杆菌58生长和产β-葡萄糖苷酶的最适碳源为乳糖,酶活达0.66 U/m L,显著高于果糖、蔗糖、葡萄糖和麦芽糖(p<0.05)。菌株在乳糖碳源中培养18 h产酶活力最佳,达0.75 U/mL,且生长情况良好。响应面优化实验得出发酵豆乳大豆异黄酮最佳转化条件为:接种量3.80%,糖含量5.80%,发酵温度38.10℃,发酵时间9.80 h。此条件下,大豆异黄酮苷元含量预测值达68.63 mg/L,与实验值68.16 mg/L相比差异不显著,表明构建二次模型的科学性和准确性,与优化前(59.64 mg/L)相比提高15.07%,有助于乳酸菌发酵豆乳中大豆异黄酮糖苷向高生物活性和利用度大豆异黄酮苷元的转化。  相似文献   

6.
通过测定大豆异黄酮、总黄酮、总多酚含量的变化,结合发酵过程中浏阳豆豉的抗氧化活性的变化,来探讨浏阳豆豉抗氧化活性变化的机理。结果表明:虽然总黄酮与总大豆异黄酮的含量逐步减少,但发酵初期原料中大豆异黄酮主要为糖苷型(占85.75%),而发酵末期则主要为更具活性的苷元型大豆异黄酮(占81.41%),且总多酚经发酵从2.78 mg/g提升至5.76 mg/g,发酵最后一天(L20)豆豉的总抗氧化能力、DPPH·、·OH、O2-·清除率分别增加至1088.91 U/g、93.67%、90.24%、88.38%,此外相关性结果表明苷元型大豆异黄酮要比总多酚对豆豉抗氧化活性的影响更大。实验证明发酵有助于大豆中总多酚的增加以及糖苷型大豆异黄酮向苷元型大豆异黄酮转换,这是提高豆豉抗氧化能力及功能性的关键因素之一。  相似文献   

7.
《粮食与油脂》2017,(1):79-82
利用裂褶菌发酵β–葡萄糖苷酶将大豆异黄酮糖苷转化为苷元,研究底物浓度、pH、温度和时间对糖苷转化率的影响,采用正交试验优化转化条件。结果显示:最佳条件为底物浓度15g/100mL、温度50℃、转化时间20h,此时测得大豆苷和染料木苷的转化率分别为99.14%和98.57%。  相似文献   

8.
以市售大豆异黄酮粉为样品,采用炒制、微波、烘箱加热法对其进行预处理,研究其对酶解大豆异黄酮转化大豆异黄酮苷元含量的影响。结果表明:炒制效果明显好于烘箱和微波法(p0.05),炒制后大豆异黄酮苷元含量比烘箱、微波处理后分别增加1.238、1.240 mg/g。再运用单因素、响应曲面法对炒制条件进行优化,得到最优条件为:炒制时间103 s,炒制温度137℃,物料量13 g,此时大豆异黄酮苷元含量和转化率为13.33 mg/g、72.23%。  相似文献   

9.
为了提高大豆异黄酮的生物活性作用,获得更多的大豆异黄酮苷元成分,对纤维素酶水解大豆异黄酮进行了研究,通过单因素试验和正交试验,酶水解的影响因素主要为水解温度、水解时间、酶-底物质量比和酶水解pH值。得到纤维素酶制备大豆异黄酮苷元的较优工艺条件:纤维素酶水解时间17 h,水解温度48.5℃,水解pH值5.0,酶-底物质量比为1.05%。通过小试试验,以脱脂豆粕原料进行提取大豆异黄酮,纤维素酶水解得到苷元产品收率为0.1%,总苷元质量分数为30.79%;以30%大豆异黄酮粉为原料进行水解,获得产品收率为10.2%,总苷元质量分数为47.81%。  相似文献   

10.
孙强  孙洁心  张永忠 《食品工业科技》2011,(12):258-260,393
研究了以少孢根霉作为菌种对豆粕进行发酵生产大豆异黄酮苷元的方法,通过单因素实验和正交实验确定了发酵的最佳培养基是豆粕∶水=1∶3,0.8%乳酸,最佳发酵条件是发酵时间24h,发酵温度30℃。在此条件下,黄豆苷元转化率为90.95%,染料木黄酮转化率为92.24%。为豆粕的综合利用和大豆异黄酮苷元的产业化生产提供参考。  相似文献   

11.
大豆异黄酮水解物的制备   总被引:1,自引:0,他引:1  
利用黑曲霉产酶发酵培养基制备β-葡萄糖苷酶,再利用β-葡萄糖苷酶水解大豆异黄酮粉制备异黄酮苷元。研究结果表明,较优产酶发酵培养基的C/N为6∶4,加水量1.4倍,培养基中不添加诱导物。水解500 mg40%大豆异黄酮粉的最佳条件为:加酶量100 U,水解温度50℃,水解时间1 h。  相似文献   

12.
周文红 《中国油脂》2020,45(12):100-104
以大豆异黄酮糖苷为原料,酶解制备苷元型大豆异黄酮。以水解率和苷元得率为指标对几种来源的β-葡萄糖苷酶、β-半乳糖苷酶、纤维素酶进行筛选,确定最适酶解用酶。通过单因素实验对酶添加量、底物质量浓度、酶解温度、pH、酶解时间进行优化。结果表明,最佳酶解工艺条件为:采用β-葡萄糖苷酶(300 U/g),酶添加量7%,底物质量浓度1.6 mg/mL,酶解温度56 ℃,pH 4.8,酶解时间6 h。在最佳工艺条件下,大豆异黄酮糖苷的水解率及苷元得率分别达到96.84%和99.74%。  相似文献   

13.
利用二步水解法制备大豆异黄酮苷元。经弱碱水解丙二酰基大豆异黄酮为糖苷型大豆异黄酮,再经果胶酶进一步水解获得富含苷元的大豆异黄酮。采用单因素试验和正交试验,得到果胶酶制备大豆异黄酮苷元的较优工艺条件:果胶酶水解时间20 min,水解温度47.5℃,水解pH值4.2,酶-底物质量比为0.80%。苷元水解得率为87.37%。  相似文献   

14.
目的:探索一种用自筛的β-葡萄糖苷酶高产菌-N1制备大豆异黄酮苷元的方法。方法:应用酶学研究常规方法在实验室条件下,用自筛的β-葡萄糖苷酶高产菌-N1获得β-葡萄糖苷酶液,探索制备大豆异黄酮苷元的工艺。结果:实验室制备的大豆异黄酮苷元样品纯度为91.33%,收率为11.44%。大豆异黄酮粗品经处理后,苷的数量减少,大豆苷和黄豆黄苷从28.21%降低到22.93%,染料木苷从8.24%降低到5.67%。苷元的数量明显的增加,大豆苷元从0.04%增加至0.05%,黄豆黄素从的0.003%增加至0.09%,染料木素从0.006%增加至0.07%。结论:研究表明以自筛菌-N1作为酶促反应制备大豆异黄酮苷元的β-葡萄糖苷酶产生菌完全可行。大豆异黄酮粗品经酶液处理后,苷元的数量有明显的增加,尤其是黄豆黄素和染料木素,分别增加了30倍和11.67倍。为进一步研究奠定了基础。  相似文献   

15.
丹贝异黄酮生物活性增强的机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以少孢根霉RT-3孢子接种在含高浓度的大豆异黄酮提取物制成的发酵基质中,发酵36h后大豆异黄酮被部分水解成相应的苷元.用从丹贝中分离的β-葡萄糖苷酶与标准品染料木素糖苷和大豆苷元的糖苷作用10min,染料木素糖苷和大豆苷元的糖苷被水解成相应的苷元.结果表明:丹贝异黄酮生物活性增强是发酵剂RT-3孢子分泌的β-葡萄糖苷酶将异黄酮由糖苷水解成苷元,而苷元比糖苷有更强的活性.  相似文献   

16.
目的:优化大豆异黄酮苷微生物转化的发酵条件。方法:利用本实验室筛选出的海洋拟诺卡氏菌株HY-G进行生物转化,采用单因素和正交试验,对发酵条件和培养基组成及条件进行优化。结果:筛选的最佳发酵工艺为在高氏一号基础培养基中加入1g/100mL蔗糖、0.03g/100mL硫酸铵和200mg/L诱导物的培养基进行培养,培养基装液量150mL/250mL,起始pH8.0,培养温度40℃,摇瓶转速120r/min,培养72h。优化后的酶活力分别达3621U/mL(对染料木素)和4862U/mL(对大豆苷元)。结论:经过优化,得出了较好的产酶发酵工艺,有利于进一步采用大规模发酵法转化大豆异黄酮苷元。  相似文献   

17.
乳酸菌β-葡萄糖苷酶水解大豆异黄酮的研究   总被引:2,自引:0,他引:2  
利用乳酸菌液态发酵得到一种高活性的大豆异黄酮水解酶--乳酸菌β-葡萄糖苷酶,通过单因素试验及正交试验优化了乳酸菌β-葡萄糖苷酶水解大豆异黄酮的条件.正交试验结果显示,当加酶量为25 μg/mL,水解温度50℃,水解时间2.0 h,pH 6.0时,黄豆苷水解率可达96.51%;在加酶量为25 μg/mL,水解温度40℃,水解时间2.0 h,pH 5.5时,染料木苷水解率为92.36%.  相似文献   

18.
试验利用黑曲霉β-葡萄糖苷酶处对豆浆进行水解处理,将结合型大豆异黄酮糖苷转化为游离型苷元。选大豆为原料,以单因素实验为基础,考察加酶量、反应时间、反应温度三个因素对豆浆中大豆异黄酮糖苷水解的影响;根据Box-Behnken实验设计原理,选取不同加酶量、反应时间、反应温度3因素3水平进行中心组合实验,建立豆浆中大豆异黄酮苷元含量的多项式回归预测模型,确定了最佳工艺参数。结果表明,最佳水解工艺条件为:加酶量0.028 U/5 mL,反应时间1.64 h,反应温度53.82℃,在此条件下制得豆浆大豆异黄酮苷元含量明显提高。测得大豆苷元(De)、黄豆黄素(Gle)、染料木素(Ge)的浓度分别为39.434±1.410μg/m L、4.626±0.462μg/m L、45.851±2.098μg/m L。而大豆苷元(De、)黄豆黄素(Gle)、染料木素(Ge)浓度的响应面预测值分别为40.905μg/m L、4.263μg/m L、48.441μg/m L,测定值与模拟值接近。优化后的工艺条件合理、可行,能明显提高豆浆中大豆异黄酮苷元的含量。  相似文献   

19.
采用高通量测序技术结合平板菌落计数法,检测分析水开菲尔及其发酵剂水开菲尔粒的细菌区系.以自然发酵的水开菲尔和水开菲尔粒为样品筛选益生菌,并通过个体、群体形态观察、生理生化实验和16S rDNA序列分析鉴定筛选出的益生菌.结果表明:乳酸菌是两种样品中的优势菌;无论是水开菲尔还是水开菲尔粒,厚壁菌门和变形菌门均为优势菌门,...  相似文献   

20.
本文比较了青方、红方、白方和低盐红腐乳中大豆异黄酮组成和含量差异,并对青方腐乳发酵过程中大豆异黄酮含量和构型变化规律进行研究。结果表明,四种类型腐乳中大豆异黄酮基本以苷元形式存在,青方腐乳大豆异黄酮含量明显低于其他类型腐乳,仅为红方腐乳的33.01%,从单一异黄酮来看,大豆苷元和染料木素在四种类型腐乳中的含量明显高于黄豆黄素;青方腐乳发酵过程中大豆异黄酮转化研究发现,白坯中大豆异黄酮以糖苷型为主,染料木苷含量高于大豆苷和黄豆黄苷,前酵过程中糖苷型大豆异黄酮转化为苷元型大豆异黄酮,盐腌过程中糖苷型大豆异黄酮含量有轻微降低,发酵过程中苷元型大豆异黄酮总量在后酵前30 d显著下降,其中大豆苷元可能部分转化为雌马酚,导致青方腐乳大豆异黄酮含量明显低于其他类型腐乳,对其转化物质需进一步鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号