首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
以具有三维纳米网格结构且可降解的聚缩醛胺气凝胶(PHA)作模板,采用蒸发结晶法,原位诱导1,1-二氨基-2,2-二硝基乙烯(FOX-7)结晶析出,得到FOX-7/PHA复合物,然后利用硫酸的稀溶液(10%)降解去掉模板,即可得到具有三维纳米结构的FOX-7(nano-FOX-7)。高效液相色谱(HPLC)测定nano-FOX-7的纯度为99%,说明模板基本去除完全。对样品的形貌、物相、结构和热分解性能进行了表征测试。结果表明,去模板后的nano-FOX-7较为完整地保留了模板PHA的三维纳米网络结构,其中FOX-7的平均晶粒尺寸为83.68 nm。与raw-FOX-7相比,特殊的纳米多孔结构使FOX-7的转晶峰和低温分解峰分别延后11.3℃和21.3℃,放热几乎集中在高温分解峰291.0℃处,分解焓从原料的1309 J·g-1增加到1421 J·g-1,表观活化能提高了128.62 kJ·mol^-1,增幅达31.46%,能量释放效率和热稳定性大幅提高。  相似文献   

2.
黄晓川  郭涛  王子俊  刘敏  秦明娜  邱少君 《含能材料》2016,24(12):1178-1182
以1,1'-二氨基-2,2'-二硝基乙烯(FOX-7)为原料,经浓硝酸硝化及有机溶剂萃取得到高氧平衡化合物——四硝基乙酰胺酸(TNAA)。对比了四种有机萃取溶剂(二氯甲烷、氯仿、四氯化碳和乙酸乙酯)所得TNAA的收率及纯度。采用DSC和TG研究了TNAA的热行为。结果表明,确定二氯甲烷为最佳萃取溶剂,其收率为95.0%,纯度为99.4%。升温速率10 K·min~(-1)下,TNAA熔化吸热峰的初始温度、峰值温度分别为84.8℃和87.8℃,熔融焓为61.7 J·g~(-1);分解放热峰的初始温度、峰值温度分别为117.7℃和131.4℃,分解热为934.8 J·g~(-1)。采用Kissinger方法得到的TNAA的热分解反应活化能E为124.7 k J·mol~(-1),指前因子A为10~(16.1)s~(-1)。自加速分解温度T_(SADT)为102.3℃、热爆炸临界温度T_b为112.2℃、T=Tp时TNAA热分解反应的热力学参数ΔH~≠、ΔS~≠以及ΔG~≠,分别为121.5 k J·mol~(-1)、61.2 J·K~(-1)·mol~(-1)和98.0 k J·mol~(-1)。  相似文献   

3.
利用微热量热实验研究了黑索今(RDX)的热分解特性及奥克托今(HMX)对其热稳定性的影响,运用AKTS分析软件对热分解曲线进行解耦分峰,得到了不受熔融相变影响的热分解曲线和参数,采用Kissinger、Friedman和Ozawa法计算了其热分解活化能。结果表明:RDX是熔融分解型物质,解耦后的RDX熔融峰温为201.07~208.05℃,分解峰温为207.99~232.76℃,活化能为167.70 kJ·mol~(-1),通过Friedman法和Ozawa法计算的活化能变化趋势相同,并得到AKTS软件验证。不同RDX/HMX比例(9/1,8/2,7/3,6/4,5/5)的样品与单质RDX相比,混合样品中RDX的熔融峰温平均降低了8.63,8.32,9.70,8.57,6.50℃,其分解峰温平均改变了1.14,2.01,2.58,3.53,3.47℃;混合样品中RDX活化能为162.32,151.40,149.78,141.14,132.93 kJ·mol~(-1),表明随着HMX比例的增加,RDX活化能降低。  相似文献   

4.
FOX-7及含FOX-7的HTPB推进剂安全性能   总被引:2,自引:3,他引:2  
陈中娥  李忠友  姚南  雷晴  王度 《含能材料》2010,18(3):316-319
采用DSC-TG热分析联用仪和感度测试仪对比研究了1,1-二氨基-2,2-二硝基乙烯(FOX-7)和黑索今(RDX)及含FOX-7(RDX)的HTPB推进剂的多种感度。结果表明,FOX-7的热解活化能为245.2 kJ.mol-1,分解放热峰温为222.13℃,摩擦感度不高于68%,落锤撞击感度大于25.0 J。同比含RDX的HTPB推进剂配方,含FOX-7的HTPB推进剂的机械感度(摩擦、撞击)和静电火花感度显著降低,当FOX-7的含量为15%时,HTPB/AP推进剂中高氯酸铵(AP)的热分解剧烈程度已显著弱化,推进剂的主要分解放热峰温在260℃左右,与RDX/HTPB推进剂相比,该温度前移了近40℃。  相似文献   

5.
为提高2,6-二氨基-3,5-二硝基吡啶~(-1)-氧化物(ANPyO)Pb(Ⅱ)(Pb-ANPyO)含能配合物能量水平,获得安全性能和热分解特性参数。以ANPy O和醋酸铅为原料,N,N-二甲基甲酰胺(DMF)为溶剂,合成了ANPy OPb(Ⅱ)含能配合物。采用红外光谱(FTIR),元素分析和X射线光电子能谱分析(XPS)表征其结构,测试了其撞击感度和摩擦感度,采用差热分析-热重法(DSC-TG)研究其在不同升温速率下的热分解行为,利用Kissinger公式,Ozawa公式,热力学关系式和Zhang-Hu-Xie-Li公式分别计算了配合物热分解反应的表观活化能和热力学参数,以及配合物的热安全性参数。结果表明,配合物分子式为Pb(C5H3N5O5),特性落高和摩擦感度分别为238 cm和0。配合物在25~500℃范围内的热分解过程由一个吸热熔融峰和一个分解放热峰组成,相应峰温分别为265.0℃和332.6℃。用Kissinger法和Ozawa法所得配合物放热分解反应的活化能分别为202.42 k J·mol~(-1)和197.40 k J·mol~(-1),放热分解反应的活化熵,活化焓和活化自由能分别为149.5 J·mol~(-1)·K~(-1),197.7 k J·mol~(-1),112.1 kJ·mol~(-1),热爆炸临界温度和自加速分解温度分别为586.6 K和572.4 K。  相似文献   

6.
杨雷  刘玉存  荆苏明 《含能材料》2020,28(7):690-694
为了研究2,4,6-三硝基-3,5-二氟苯酚的热分解行为,采用热失重-差热分析(TG-DTA)方法对2,4,6-三硝基-3,5-二氟苯酚的非等温热分解动力学进行研究。在氮气的氛围下,分别以升温速率为5,10,15,20 K·min~(-1)对2,4,6-三硝基-3,5-二氟苯酚的TG-DTA曲线进行实时分析。采用F-W-O、Doyle、Kissinger和Satava-Sestak方法分别计算了2,4,6-三硝基-3,5-二氟苯酚的活化能(E)、指前因子(A)等热分解动力学参数,结果表明,该化合物在热分解过程中先转变为熔融态再进行分解,且分解时迅速放热。计算其热分解的表观活化能平均值为123.06 kJ·mol~(-1),指前因子为1.37×1013 min~(-1),确定其反应机理函数的积分形式为g(α)=α~(1/2),根据其活化能和指前因子计算其热分解过程中的活化焓ΔH~≠为1 22.65 kJ·mol~(-1),活化熵ΔS~≠为121.46J·mol~(-1)·K~(-1),活化吉布斯自由能ΔG~≠为62.98 kJ·mol~(-1)。  相似文献   

7.
利用DSC和TG-DTG法研究了Cu(NH3)2(FOX-7)2的热分解行为。第一放热分解过程的非等温分解动力学方程为dα=dT1015.124α3/4exp(-1.429×105/RT)。Cu(NH.5℃和156.2℃。利用β3)2(FOX-7)2的自加速分解温度和热爆炸临界温度分别为145微量热法研究了Cu(NH3)2(FOX-7)2的比热容,25℃时的摩尔热容为447.3 J·mol-1·K-1。同时估算了Cu(NH3)2(FOX-7)2的绝热至爆时间大约为9.5 s。Cu(NH3)2(FOX-7)2的热稳定性远低于母体化合物FOX-7。  相似文献   

8.
FOX-7的热分解动力学和机理研究   总被引:3,自引:0,他引:3  
使用原位热红外光谱技术对FOX-7热分解全过程的气相和凝聚相产物进行了原位在线检测,通过非等温热红外动力学处理技术,获得了热分解过程中各特征官能团的断裂分解活化能: C-N键: 181.7 kJ·mol-1,-NO2键:235.8 kJ·mol-1,N-H键: 170.7 kJ·mol-1.提出了FOX-7可能的两步热分解机理:第1阶段是分子共轭键、分子间(内)氢键的断裂、硝基和亚硝基重排"脱硝"释放出NO;第2阶段是残余碎片分解释放出HCN和NH3.  相似文献   

9.
李小东  徐哲  燕翔  刘磊  王恒  王晶禹 《含能材料》2018,26(3):218-222
采用色散校正密度泛函理论的RI-B2PLYP-D3和PW6B95-D3方法得到了1,1-二氨基-2,2-二硝基乙烯(FOX-7)的四种气相团簇,以此模拟FOX-7分子在晶体结构中的存在状态。绘制了团簇形成过程中各分子相邻处的电子密度差图,从电子密度变化的角度解释了分子间相互作用的形成及来源,研究了凝聚相FOX-7分子间相互作用对FOX-7裂解机理的影响。结果表明,FOX-7团簇中分子间相互作用源于电子偏移形成的部分分子间共享电子,分子间相互作用形成的同时也使部分分子内的化学键被弱化,致使FOX-7的裂解通道发生改变。采用PW6B95-D3理论时,分子间相互作用使各团簇中FOX-7的C—NO_2键裂解活化能比单分子状态时普遍降低。不同团簇中分子间相互作用力角度不同,硝基异构反应的过程有所变化,与单分子FOX-7相比,团簇Ⅱ硝基异构通道的活化能下降了210.9 k J·mol~(-1),而团簇Ⅳ硝基异构通道的活化能升高了39.4 k J·mol~(-1)。  相似文献   

10.
FOX-7的热分解动力学   总被引:1,自引:0,他引:1  
本文中采用DSC、加速量热仪和布氏压力法对FOX-7在不同实验条件下的热分解行为进行了研究,得到了FOX-7在敞开体系、绝热体系和真空恒温体系进行分解的动力学参数,结果表明:FOX-7在这3种条件下进行分解的活化能分别为249.89kJ/mol、342.45kJ/mol和337.59kJ/mol,根据DSC数据计算的热爆炸临界温度为213.55℃,这些实验数据为今后预估FOX.7的存储寿命提供了依据.  相似文献   

11.
HTPE的合成及弹性体的性能   总被引:2,自引:2,他引:0  
汪存东  罗运军  夏敏 《含能材料》2011,19(5):518-522
以大分子聚乙二醇为引发剂(起始剂),三氟化硼乙醚络合物为催化剂,在少量环氧丙烷助开环的条件下,四氢呋喃发生阳离子开环聚合,直接在聚乙二醇的两端接上了聚四氢呋喃醚链段,从而制备出了一种全新结构的PTHF-PEO-PTHF端羟基三嵌段共聚醚(HTPE),采用红外光谱和核磁共振1H NMR对产物进行了表征,并以合成的HTPE...  相似文献   

12.
任治  李笑江  刘萌  王晗  吴雄岗 《含能材料》2015,23(7):638-643
用溶液共混法,制备了不同比例的硝化棉(NC)/端羟基聚醚(HTPE)物理共混物以及NC/HTPE/甲苯-2,4-二异氰酸酯(TDI)交联聚合物。用混合焓法研究了物理共混体系的相容性。用动态热机械分析研究了共混物的动态力学性能。用傅里叶变换红外(FT-IR)光谱法研究了NC和HTPE间的交联反应状态及分子间相互作用。结果表明,NC/HTPE是部分相容体系,且相容性与组成有关。随着HTPE比例的增加,共混体系的玻璃化温度逐渐降低,当NC含量为30%时,NC/HTPE物理共混体系的低温Tg为-9.8℃,交联体系的Tg为-1.4℃,相比NC的Tg有大幅度的降低。与NC/HTPE物理共混体系相比,化学交联可使NC和HTPE的相容性增加。交联后的异氰酸酯基在2270 cm-1处的特征吸收峰消失,说明交联反应比较完全。共混后NC的羟基和硝基的伸缩振动吸收峰均向低波数移动,说明NC和HTPE间存在氢键相互作用。交联之后,羟基和硝基的吸收峰移动减小,说明交联使NC和HTPE间的氢键作用被化学键作用部分取代。  相似文献   

13.
HTPE/增塑剂共混体系相容性的分子动力学模拟   总被引:1,自引:1,他引:0  
用分子动力学(MD)方法模拟研究了粘结剂端羟基聚醚(HTPE)与增塑剂邻苯二甲酸二丁酯(DBP),癸二酸二辛酯(DOS)和邻苯二甲酸二乙酯(DEP)的相容性及HTPE/增塑剂共混物的玻璃化转变温度(Tg)。结果表明,当共混体系中存在较强的分子间氢键作用时,通过分析结合能、径向分布函数和玻璃化转变温度,可综合评价HTPE与增塑剂的相容性。HTPE与三种增塑剂相容性的优劣顺序为HTPE/DBPHTPE/DOSHTPE/DEP;通过温度-比容关系得到了HTPE,HTPE/DBP,HTPE/DOS及HTPE/DEP四种体系的Tg,依次为190.26,176.30,168.82,178.33 K。  相似文献   

14.
新型含能材料FOX-12性能研究   总被引:13,自引:6,他引:7  
研究了N-脒基脲二硝酰胺盐(FOX-12)性能,FOX-12不溶于冷水,结晶密度1.755g/cm^3,燃烧热1483.98kJ/mol,分解温度218.41℃,感度低,热安定性好。FOX-12相容性较好,能和HMX、RDX等火炸药常用组分相容。  相似文献   

15.
HTPE推进剂研究进展   总被引:9,自引:5,他引:4  
综述了端羟基聚醚(HTPE)推进剂近年来的研究进展.介绍了HTPE黏合剂的研制与生产,对比了HTPE推进剂与HTPB推进剂,并对HTPE推进剂的老化性能以及对其钝感性能的改进进行了说明.由于其显著的钝感性能和优异的力学性能,HTPE推进剂将替代HTPB推进剂.  相似文献   

16.
为了提升奥克托今(HMX)为基的浇注型高聚物粘结炸药(Polymer Bonded Explosive,PBX)的安全性能,在配方中引入部分1,1-二氨基-2,2-二硝基乙烯(FOX-7)替换HMX,研究了FOX-7对配方的热安定性、机械感度、冲击波感度、静电火花感度等安全性能的影响规律。结果表明,在引入FOX-7后,与HMX基浇注型PBX配方GO-1相比,配方GOXL-A的摩擦感度降低;在快速烤燃、慢速烤燃试验中的响应时间分别延长了58.8%、18.5%,并通过了升温速率为3.3℃·h~(-1)的极不敏感物质(EIS)缓慢升温试验考核;其冲击波感度显著降低,隔板厚度(L_(50))较GO-1降低了15.7%,50%临界起爆压力(p_(50))提升了9.5%;其静电火花感度显著降低,50%发火电压(V_(50))与50%发火能量(E_(50))分别提升65.3%和187.5%。  相似文献   

17.
为获得不同结晶条件对1,1‐二氨基‐2,2‐二硝基乙烯(FOX‐7)晶体质量和形貌的影响规律,实现对其晶体形态的控制,使用Crystal SCAN多通道结晶仪,采用浊度法测定了20~95℃,FOX‐7在二甲基亚砜(DMSO)、水(H_2O)及其二元混合溶剂中的溶解度以及在DMSO/H_2O=2∶1(体积比)混合溶剂中的介稳区宽度。采用降温法研究了FOX‐7在多种结晶条件下的晶体形态,并测试了晶体的机械感度和热性能。结果表明,FOX‐7的溶解度随着温度的升高和二元混合溶剂中DMSO含量的增加而增加;介稳区宽度随着温度的升高、降温速率的减小和搅拌速率的增大而变窄。降温结晶过程中,FOX‐7的晶体形态显著受溶剂比例、结晶起始温度和降温速率的影响,在50~80℃,降温速率不低于2℃·min~(-1)的条件下,可得到长径比几乎相同、形貌规则的立方块状高品质FOX‐7晶体,并且粒径在20~150μm内可控。同时,FOX‐7的晶体质量越好,晶体颗粒密度越大,热分解温度越高;FOX‐7的撞击感度都较低,且受颗粒形貌影响小,但摩擦感度受颗粒形貌影响较大,其中长柱状晶体的摩擦感度最小,片状晶体的最大。  相似文献   

18.
为提高六硝基六氮杂异伍兹烷(CL?20)的安全性能,并保持其较高能量,以聚氨酯高聚物Estane为包覆剂,1,1?二氨基?2,2?二硝基乙烯(FOX?7)为含能降感成分,利用水悬浮包覆法制备了三种不同配比的CL?20/FOX?7基高聚物粘结炸药。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、撞击感度测试仪以及摩擦感度测试仪对样品的形貌结构、晶型、热分解特性以及样品的机械感度进行测试分析,用电测法对三种配比高聚物粘结炸药(PBX)爆速进行测试。结果表明,CL?20/FOX?7基炸药颗粒包覆效果较好,且CL?20和FOX?7均未发生转晶。三种CL?20/FOX?7基PBX表观活化能比细化CL?20分别提高了17.12,32.87 kJ·mol~(-1)和40.24 kJ·mol~(-1);活化焓(ΔH)较CL?20也明显提高;特性落高由细化CL?20的27.5 cm分别提高到58.3,56.5,54.2 cm。三种配比CL?20/FOX?7基PBX实测爆速分别为8474,8503,8577 mg·s~(-1),与PBXN?5相当,但特性落高较PBXN?5提升了48.5%以上,炸药安全性能明显提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号