首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
绝缘子人工污秽试验加压方式的比较   总被引:1,自引:0,他引:1  
为比较恒压升降法和均匀升压法对绝缘子污闪试验结果的影响,并补充和完善高海拔地区绝缘子外绝缘特性的研究内容,在实际高海拔条件下完成了大量的人工污秽闪络试验。试品包括3种不同型号的大吨位瓷绝缘子(XWP-300、XHP2-300以及XZP-300)及2种不同伞裙结构的长串复合绝缘子,分别在交、直流电压采用均匀升压法和恒压升降法2种加压方法进行试验。试验结果表明:在2种电压下,利用均匀升压法得到的绝缘子污闪电压普遍高于恒压升降法的结果;交流电压下,瓷绝缘子在均匀升压法下得到的污闪电压结果比恒压升降法所得结果平均高出约11%,而复合绝缘子在不同加压方式下的污闪电压受盐密的影响与其伞形结构有关;直流电压下,2种加压方式下所得试验结果之间没有统一的规律,因此不易进行简单的相互修正计算;造成2种加压方式下所得试验结果差异的原因主要是由于试验过程中绝缘子的表面状态及放电特性不同。上述结论可为不同研究单位所得试验结果间的对比以及复合绝缘子人工污秽试验标准的确立提供参考。  相似文献   

2.
高海拔地区±800kV复合支柱绝缘子直流污闪特性   总被引:6,自引:2,他引:4  
为给特高压直流变电外绝缘设计提供试验依据,在实际海拔1970m条件下对4种复合支柱绝缘子和2种瓷支柱绝缘子进行了恒压升降法直流污闪试验,研究了高海拔条件下盐密、灰密以及绝缘子材质和几何形状等因素对其直流污闪特性的影响。结果表明,污闪电压随盐密、灰密的增大而下降,并分别符合幂函数关系;盐密与灰密对污闪电压的影响相互独立;用最小二乘法可以得到给定结构绝缘子的直流污闪电压计算公式。比较不同绝缘子的污闪特性表明,复合支柱绝缘子直流污闪特性优于瓷支柱绝缘子,单位绝缘高度直流污闪电压随芯棒直径增加而减小。以上结果可为我国高海拔地区直流输电外绝缘配置的选择和设计提供参考。  相似文献   

3.
外形结构和材料对绝缘子的污秽闪络特性有较大影响。为此,采用恒压升降法,在高海拔地区进行了大吨位长棒形瓷绝缘子的直流人工污秽试验,通过测量泄漏电流和污闪电压,拍摄电弧发展照片,对比研究了芯棒涂覆强疏水型长效防污闪涂料H-PRTV对长棒形瓷绝缘子直流污闪特性的影响。结果表明,芯棒涂覆H-PRTV后,长棒形瓷绝缘子直流污闪电压明显提高,电弧发展过程明显缩短,临闪前大幅值泄漏电流脉冲减少,整个污秽闪络过程有延缓的趋势。  相似文献   

4.
高海拔地区直流输电线路外绝缘特性研究   总被引:10,自引:7,他引:3  
为给高海拔地区特高压直流输电线路绝缘子的选择及外绝缘的设计提供参考,在实际高海拔条件下采用恒压升降法详细研究了瓷、玻璃和复合绝缘子的直流污闪特性,其内容主要包括:不同悬挂方式和污秽分布情况对瓷绝缘子污闪特性的影响;2种大吨位玻璃绝缘子直流污闪特性的对比及550 kN玻璃绝缘子V串与I串污闪电压的比较;比较3类绝缘子直流污闪特性。试验结果表明:悬挂方式及污秽分布情况对瓷和玻璃绝缘子有较大影响;复合绝缘子的直流污闪特性明显优于瓷和玻璃绝缘子;爬电距离不是决定复合绝缘子直流污闪电压的唯一因素,合理优化复合绝缘子的伞裙结构可有效提高其单位绝缘高度的直流污闪电压。  相似文献   

5.
试验方法对复合绝缘子污秽闪络特性的影响   总被引:5,自引:2,他引:3  
IEC及中国相关标准推荐了几种绝缘子污秽的试验方法,但不同试验方法对复合绝缘子污闪特性的影响并不明确。以复合绝缘子为例,分别采用恒压升降法、均匀升压法、最大耐受法试验研究了复合绝缘子的交流污秽闪络特性。结果表明:试验方法对污秽影响特征指数a值的影响不明显;在标准偏差取7.0%时,采用均匀升压法得到的50%闪络电压比采用恒压升降法得到的50%耐受电压高0.5个标准偏差,采用最大耐受法得到的最大耐受电压Umw等于采用恒压升降法得到的闪络概率为10%的污闪电压;不同的试验方法得到的试验结果存在内在联系,可以根据试验的具体情况,选择适当试验方法。  相似文献   

6.
低气压下复合绝缘子长串直流污闪特性   总被引:4,自引:2,他引:2  
由于复合绝缘子具有的耐污性能好的优越性,我国正在建设的云广±800kV直流特高压线路也将采用复合绝缘子。为研究绝缘子面临的污秽和高海拔的综合影响,利用大型多功能人工气候室试验研究了低气压下复合绝缘子直流污秽闪络特性,结果表明:用升压法获得的复合绝缘子闪络电压比用升降法获得的50%耐受电压约高7%;复合绝缘子闪络电压与长度基本呈线性关系;气压对复合绝缘子直流污秽闪络电压的影响程度指数为0.6~0.8且受污秽度的影响;在盐密为0.05mg/cm2时,±800kV直流特高压线路所需复合绝缘子长度的基本配置应≥8.2m。  相似文献   

7.
复合绝缘子伞裙参数对直流污闪电压的影响   总被引:4,自引:3,他引:1  
为研究伞裙结构对复合绝缘子污闪特性的影响规律,并给超特高压复合绝缘子的选型和设计提供参考,在1970 m实际高海拔条件下,以31种不同伞裙结构参数的复合绝缘子为试品,采用恒压升降法,在雾室中进行了大量的人工污秽试验研究。试验结果表明:复合绝缘子的伞伸出和伞间距的参数不同时,其爬电距离的大小和爬电距离的利用率不同,因此对污闪电压影响较大;随着伞伸出或伞间距的增大,复合绝缘子的直流污闪电压均存在最大值;伞间距的变化对一大一小复合绝缘子的污闪电压影响相对较大,大伞伞伸出的变化对一大两小复合绝缘子的污闪电压影响相对较大。  相似文献   

8.
支柱绝缘子作为换流站必不可少的绝缘配件,研究其外绝缘性能有重要意义。为此,总结了国内外关于换流站支柱绝缘子的污秽外绝缘特性研究工作,并结合我国特高压直流输电工程面临的特有技术问题,在实际高海拔地区对特高压直流全尺寸支柱绝缘子试品进行了人工污秽试验研究。试验分别得到了瓷和复合2种材质的换流站支柱绝缘子在不同污秽度条件下的50%污耐受电压曲线,并与相同污秽度条件下的污雨闪电压进行了对比,最后将该试验结果与不同单位的研究成果进行了比较。研究表明:直径及伞形结构对支柱瓷绝缘子的污闪特性有明显影响;支柱绝缘子的污闪电压与串长近似呈线性关系;支柱绝缘子的污雨闪电压高于其相同污秽条件下的污闪电压,因此支柱绝缘子的外绝缘设计应以污闪电压为主。  相似文献   

9.
高海拔地区大吨位绝缘子直流污闪特性研究   总被引:5,自引:2,他引:3  
为了研究实际高海拔条件下大吨位瓷和玻璃绝缘子染污放电特性,给高海拔地区特高压直流输电线路绝缘子的选择及外绝缘设计提供参考,在实际海拔1970 m条件下,利用±250 kV直流污秽试验电压,采用恒压升降法,对大吨位瓷和玻璃绝缘子的直流污闪特性进行了详细研究。试验结果表明:大吨位瓷和玻璃绝缘子的直流污闪特性相差不大;盐的种类、灰密大小及污秽分布情况对大吨位瓷绝缘子直流污闪特性影响较大;伞形对绝缘子表面电弧发展特性影响较大,使得不同伞形绝缘子的直流污闪电压差别较大。因此,在高海拔地区特高压线路外绝缘选型和设计中要充分考虑这些因素的影响。  相似文献   

10.
高海拔直流外绝缘问题一直是制约高海拔地区超特高压直流输电工程设计的技术难题。为此,依托昆明特高压实验室在实际高海拔条件下,对特高压直流输电工程外绝缘特性进行了系统研究。研究了±800 k V全尺寸悬式和支柱绝缘子直流污闪特性,以及典型电极和±800 k V直流线路塔头空气间隙放电特性。结果表明,在高海拔条件下,随着线路悬式复合绝缘子和换流站支柱绝缘子串长的增加,其50%污秽耐受电压均成线性增加关系;随着典型长空气间隙和±800 k V直流线路塔头间隙距离的增大,其50%雷电冲击和直流放电电压均成线性增加。该研究成果已应用于高海拔特高压直流输电工程外绝缘的设计和复合绝缘子产品的开发,并取得了良好的社会和经济效益。  相似文献   

11.
高海拔直流线路绝缘子人工污秽试验方法   总被引:3,自引:0,他引:3  
为对直流线路绝缘子人工污秽试验方法导则的制定和高海拔地区直流线路外绝缘设计提供参考,在1 970 m实际为试品,在人工雾室中对其不同人工污秽试验方法进行对比高海拔条件下,分别以大吨位钟罩型瓷绝缘子和复合绝缘子研究。试验结果表明不同试验方法下的直流闪络电压有一定的差异:瓷和复合绝缘子浸污法试验结果稍低于定量涂刷法(小于5%);瓷和复合绝缘子的升压法试验中,在1.5~3.6 kV/s范围内,升压速度对试验结果影响不大(4%之内);但升压法试验结果明显高于恒压升降法,并随着盐密的增大两者的差值逐渐增加。  相似文献   

12.
直流复合绝缘子不均匀污秽闪络特性研究   总被引:9,自引:5,他引:4  
为了给超高压及特高压直流线路复合绝缘子设计应用提供依据,采用人工污秽试验方法研究了直流复合绝缘子不均匀污秽闪络特性以及憎水性条件下污闪电压的提高幅度,提出了直流复合绝缘子不均匀污秽闪络电压的修正系数公式,获得了修正系数。研究结果表明,污秽在上下表面不均匀分布对复合绝缘子污闪电压的影响比瓷或玻璃绝缘子的影响小,直流复合绝缘子上下表面污秽不均匀校正系数为1.065,复合绝缘子在憎水性下直流污闪梯度比亲水性下高出近153%。  相似文献   

13.
在海拔2 100m的国家特高压工程实验室,采用恒压升降法全面深入地研究了一大一小和一大两小伞形、6.25m(5支串联组成)绝缘高度的两种大尺寸复合支柱绝缘子的直流污闪特性。试验表明:一大两小伞形大尺寸复合支柱绝缘子的直流污闪特性优于一大一小伞形;大尺寸试品的直流污闪电压与盐密、灰密均成幂函数关系,盐密对U50%的影响程度明显大于灰密;与短串试品相比,盐密对大尺寸试品的影响较大;随着上、下表面污秽比的增大,大尺寸试品直流污闪电压增加不超过10%;在绝缘高度6.25m范围内,直流污闪电压与复合支柱绝缘子串长呈良好线性关系,但由于试验数据存在一定的分散性,大尺寸试品线性推导值和试验值相差约15%;大尺寸试品的紫外放电光子数大于短串,同时,受污秽不均匀分布的影响,大尺寸试品的中、下部紫外光子数稍大于上部;大尺寸试品的中、下端电弧桥接现象剧烈,电弧大范围跨接更为明显。  相似文献   

14.
为了研究高海拔地区伞伸出对复合支柱绝缘子直流污闪电压的影响规律,选取一大一小和一大两小两种伞形结构的10种伞伸出参数复合支柱绝缘子,在海拔2 100 m的条件下,采用恒压升降法进行人工污秽试验,研究伞伸出参数对复合支柱绝缘子污闪电压的影响,同时测量了试品单元伞裙表面电阻在雾室随时间的变化,用紫外放电仪和高速摄像机观测试品的临闪前局部放电和沿面电弧发展。研究结果表明:试品污闪电压值随着平均伞伸出增大存在最大值,提出了平均伞伸出与污闪电压值的二次函数关系;由于绝缘子表面电阻随着伞伸出的增大而减小,临闪前局部放电现象趋于明显,表面电弧桥接概率加大,电弧"飘弧"现象严重,大大降低了爬距利用率,导致污闪电压值下降。  相似文献   

15.
高海拔直流场设备污秽性能试验研究   总被引:9,自引:0,他引:9  
直流设备的污闪问题已很突出,而高海拔地区因空气密度低而导致绝缘子污闪电压进一步下降,因此对高海拔低气压条件下直流设备的污秽外绝缘性能进行试验研究很有必要。章给出了污秽绝缘子污闪电压和大气压的关系及直流电压下的特性指数n,介绍了原有低海拔人工污秽试验和新近在不同气压下完成的直流支柱绝缘子人工污秽试验结果.提出了对高海拔换流站直流场户外设备外绝缘进行海拔修正的意见。  相似文献   

16.
复合绝缘子污秽试验次数的统计特性分析   总被引:1,自引:1,他引:0  
均匀升压法是绝缘子人工污秽试验的一种重要试验方法,通过对复合绝缘子污秽试验次数的统计特性分析,并经实例计算,在一定统计误差和置信水平下,估计绝缘子污闪试验所需的最少试验次数。均匀升压法的最小样本数与相对分散系数有密切关系,对于直流复合绝缘子污秽试验,最小有效样本数取10~12次,对于交流复合绝缘子,最小样本数取15~16次。  相似文献   

17.
高海拔特高压直流换流站外绝缘自然积污状况研究   总被引:3,自引:0,他引:3  
总结了高海拔禄丰直流自然积污试验站的试验结果,给出了站用直流支柱绝缘子和线路悬式绝缘子的污秽度,着重讨论了直流支柱绝缘子和悬式绝缘子表面的直流积污特性.  相似文献   

18.
特高压直流输电线路外绝缘设计和绝缘子选型   总被引:11,自引:15,他引:11  
污秽外绝缘问题是我国直流特高压输电工程建设中最关键的技术问题之一。瓷和玻璃绝缘子已经不能满足我国特高压直流输电工程外绝缘的要求,复合绝缘子是解决该问题的必然选择。目前国内外虽然对复合绝缘子的直流污闪特性进行大量的研究,但对其人工污秽试验方法及输电线路绝缘子选型等外绝缘设计的一系列基础问题尚没有解决。为此提出了特高压直流输电线路外绝缘设计和复合绝缘子选型需要开展的研究,并对比了3种不同材料绝缘子的直流污闪特性,最后详细的论述了复合绝缘子伞裙结构的优化设计。  相似文献   

19.
复合绝缘子自然污秽与人工污秽试验的等价性分析   总被引:8,自引:6,他引:2  
为了研究实际高海拔条件下复合绝缘子自然污秽与人工污秽试验的差异,给高海拔地区直流输电线路的外绝缘设计提供参考,在高海拔条件下,对绝缘高度为1.9m、伞形结构为一大一小的复合绝缘子进行不同附灰密度、不同污秽分布以及盐的不同成分的人工污秽试验,揭示灰密、污秽分布和盐的成分等因素对复合绝缘子直流污闪特性的影响。试验发现,盐密一定、灰密≤1.0mg/cm2的条件下,灰密修正系数与附灰密度成负幂函数关系;灰密一定的条件下,污闪电压随污秽分布不均匀程度的增加而增加;盐密一定的条件下,盐种类的修正系数与CaSO4贡献率成指数关系。因此,在估算自然污秽条件下复合绝缘子的直流污闪电压及实际工程外绝缘配置时要充分考虑这些因素的影响。  相似文献   

20.
高海拔地区直流耐张绝缘子布置方式对其污闪特性的影响   总被引:2,自引:1,他引:1  
绝缘子污闪特性的研究主要集中在悬垂Ⅰ型、Ⅱ型、Ⅴ型布置的瓷、玻璃绝缘子,对水平耐张布置绝缘子的污闪特性研究较少,为此在1970 m高海拔试验基地分别试验研究了水平耐张布置和悬垂Ⅰ型复合绝缘子和长棒形瓷绝缘子2种直流绝缘子人工污秽闪络特性的影响.结果表明:布置方式对绝缘子直流污闪特性影响不同;在不同污秽程度下,复合绝缘子...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号