首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.  相似文献   

2.
The optimal control problem for a class of singularly perturbed time‐delay composite systems affected by external disturbances is investigated. The system is decomposed into a fast linear subsystem and a slow time‐delay subsystem with disturbances. For the slow subsystem, the feedforward compensation technique is proposed to reject the disturbances, and the successive approximation approach (SAA) is applied to decompose it into decoupled subsystems and solve the two‐point boundary value (TPBV) problem. By combining with the optimal control law of the fast subsystem, the feedforward and feedback composite control (FFCC) law of the original composite system is obtained. The FFCC law consists of analytic state feedback and feedforward terms and a compensation term which is the limit of the adjoint vector sequence. The compensation term can be obtained from an iteration formula of adjoint vectors. Simulation results are employed to test the validity of the proposed design algorithm. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
In this paper, we consider the control problem of strict‐feedback nonlinear systems with time‐varying input and output delays. The approach is based on the usual observer/predictor/feedback approach, but the novelty is the use of the closed‐loop dynamics in the predictor. This approach allows to develop two designs, an instantaneous predictor and a delay differential equation‐based predictor, that both attain the same performance in terms of system trajectories and input signal as in the case with no delays. The design based on delay differential equations allows to build a cascade of predictors to deal with arbitrarily large delay bounds. The resulting controller is much simpler to implement than classical infinite‐dimensional predictors, and it is robust with respect to actuation and measurement disturbances. We illustrate the approach with an application to the control of a chaotic system with input delay. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
After considering the stabilization of a class of high-order stochastic nonlinear systems which are neither necessarily feedback linearizable nor affine in the control input, in this brief paper, we further address the problem of state-feedback inverse optimal stabilization in probability, i.e., our redesigned stabilizing backstepping controller is also optimal with respect to meaningful cost functionals.  相似文献   

5.
In this paper, an adaptive optimal control strategy is proposed for a class of strict‐feedback nonlinear systems with output constraints by using dynamic surface control. The controller design procedure is divided into two parts. One is the design of feedforward controller and the other is the design of optimal controller. To guarantee the satisfaction of output constraints in feedforward controller, nonlinear mapping is utilized to transform the constrained system into an unconstrained system. Neural‐network based adaptive dynamic programming algorithm is employed to approximate the optimal cost function and the optimal control law. By theoretical analysis, all the signals in the closed‐loop system are proved to be semi‐globally uniformly ultimately bounded and the output constraints are not violated. A numerical example illustrates the effectiveness of the proposed scheme.  相似文献   

6.
In this paper, a two‐stage control procedure is proposed for stabilization of a class of strict‐feedback systems with unknown constant time delays and nonlinear uncertainties in the input. A nominal controller is first designed to compensate input time delays without considering input nonlinear uncertainties. Extended from backstepping algorithm, input delay compensation is realized by means of predicted states that are computed through integration of cascaded system dynamics, making the nominal closed‐loop system asymptotically stable. Based on the nominal controller presented for the input delay system, a multi‐timescale system is subsequently developed to estimate the unknown input nonlinearity and make the estimate approach the nominal control input as fast as possible. It is proved that the proposed control scheme can make states of the strict‐feedback systems converge to zero and all the signals of the closed‐loop systems are guaranteed to be bounded in the presence of input time delays and nonlinear uncertainties. Simulation verification is carried out to illuminate the effectiveness of the proposed control approach.  相似文献   

7.
ABSTRACT

This paper investigates the zero-sum differential game problem for a class of uncertain nonlinear pure-feedback systems with output constraints and unknown external disturbances. A barrier Lyapunov function is introduced to tackle the output constraints. By constructing an affine variable at each dynamic surface control design step rather than utilising the mean-value theorem, the tracking control problem for pure-feedback systems can be transformed into an equivalent zero-sum differential game problem for affine systems. Then, the solution of associated Hamilton–Jacobi–Isaacs equation can be obtained online by using the adaptive dynamic programming technique. Finally, the whole control scheme that is composed of a feedforward dynamic surface controller and a feedback differential game control strategy guarantees the stability of the closed-loop system, and the tracking error is remained in a bounded compact set. The simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

8.
This paper presents the chaos suppression problem in the class of Hopfield neural networks (HNNs) with input nonlinearity using inverse optimality approach. Using the inverse optimality technique and based on Lyapunov stability theory, a stabilizing control law, which is optimal with respect to meaningful cost functional, is determined to achieve global asymptotically stability in the closed-loop system. Numerical simulation is performed on a four-dimensional hyper-chaotic HNN to demonstrate the effectiveness of the proposed method.  相似文献   

9.
受扰非线性离散系统的前馈反馈最优控制   总被引:1,自引:2,他引:1  
利用逐次逼近法研究含外部扰动的非线性离散系统的线性二次型前馈反馈最优控制问题.首先将系统的最优控制问题转化为非线性两点边值问题族.其次,构造了该问题族的由精确线性项和非线性补偿项组成的解序列,并证明了解序列一致收敛到系统的最优解.最后,通过截取最优控制序列解中非线性补偿项的有限项,得到系统的前馈反馈次优控制(FFSOC)律及设计算法.仿真算例表明,该算法容易实现,且对抑制外部扰动的鲁棒性优于经典的反馈次优控制(FSOC).  相似文献   

10.
This paper deals with the problem of stabilizing a class of input‐delayed systems with (possibly) nonlinear uncertainties by using explicit delay compensation. It is well known that plain predictive schemes lack robustness with respect to uncertain model parameters. In this work, an uncertainty estimator is derived for input‐delay systems and combined with a modified state predictor, which uses current available information of the estimated uncertainties. Furthermore, based on Lyapunov–Krasovskii functionals, a computable criterion to check robust stability of the closed‐loop is developed and cast into a minimization problem constrained to an LMI. Additionally, for a given input delay, an iterative‐LMI algorithm is proposed to design stabilizing tuning parameters. The main results are illustrated and validated using a numerical example with a second‐order dynamic system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
带有持续扰动非线性系统的前馈-反馈最优控制   总被引:6,自引:1,他引:5  
研究具有外界持续扰动作用下非线性系统的最优控制问题,提出了一种设计前馈一反馈最优控制器的逐次逼近算法.利用该算法可将在扰动作用下的非线性系统的最优控制问题转化为求解线性非齐次两点边值序列的问题.得到的最优控制律由解析的线性前馈-反馈项和伴随向量序列极限形式的非线性补偿项组成.通过截取非线性补偿序列的有限项,可得到前馈-反馈次优控制律.仿真结果表明,该方法抑制外部持续扰动的鲁棒性优于经典反馈最优控制.  相似文献   

12.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

13.
The problem of compensation of arbitrary large input delay for nonlinear systems was solved recently with the introduction of the nonlinear predictor feedback. In this paper we solve the problem of compensation of input delay for nonlinear systems with simultaneous input and state delays of arbitrary length. The key challenge, in contrast to the case of only input delay, is that the input delay-free system (on which the design and stability proof of the closed-loop system under predictor feedback are based) is infinite-dimensional. We resolve this challenge and we design the predictor feedback law that compensates the input delay. We prove global asymptotic stability of the closed-loop system using two different techniques—one based on the construction of a Lyapunov functional, and one using estimates on solutions. We present two examples, one of a nonlinear delay system in the feedforward form with input delay, and one of a scalar, linear system with simultaneous input and state delays.  相似文献   

14.
具有持续扰动的时滞系统前馈2反馈最优控制   总被引:2,自引:0,他引:2  
唐功友  刘鹏  谢楠 《控制与决策》2005,20(5):505-510
针对外部持续扰动下的线性时滞系统,提出一种前馈-反馈最优控制的逐次逼近算法.利用逐次逼近算法,将既含有时滞项又含有超前项的两点边值问题转化为不合时滞项和超前项的线性两点边值问题族,并证明了线性两点边值问题族的解序列一致收敛于原系统最优控制律.得到的最优控制律由解析的无时滞前馈-反馈控制部分和伴随向量序列极限形式的时滞补偿控制部分组成.通过截取时滞补偿序列的有限项,得到系统的前馈-反馈次优控制律.仿真示例表明,该方法对外部持续扰动具有良好的鲁棒性.  相似文献   

15.
In this paper, a solution to the approximate tracking problem of sampled‐data systems with uncertain, time‐varying sampling intervals and delays is presented. Such time‐varying sampling intervals and delays can typically occur in the field of networked control systems. The uncertain, time‐varying sampling and network delays cause inexact feedforward, which induces a perturbation on the tracking error dynamics, for which a model is presented in this paper. Sufficient conditions for the input‐to‐state stability (ISS) of the tracking error dynamics with respect to this perturbation are given. Hereto, two analysis approaches are developed: a discrete‐time approach and an approach in terms of delay impulsive differential equations. These ISS results provide bounds on the steady‐state tracking error as a function of the plant properties, the control design and the network properties. Moreover, it is shown that feedforward preview can significantly improve the tracking performance and an online extremum seeking (nonlinear programming) algorithm is proposed to online estimate the optimal preview time. The results are illustrated on a mechanical motion control example showing the effectiveness of the proposed strategy and providing insight into the differences and commonalities between the two analysis approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper considers an infinite-horizon optimal tracking control problem for a class of large-scale interconnected systems with state time-delays. By using the successive approximation approach, two iteration sequences of vector differential equations are constructed. Meanwhile the large-scale interconnected system is decomposed into finite decoupled subsystems. The existence and uniqueness of the optimal solution is proved, as well as the convergence of the solution sequence. By finite iterations of the solution sequence, a suboptimal tracking control law is obtained. A reduced-order reference input observer is designed to make the feedforward term of the optimal tracking control law physically realizable. A numerical example shows that the presented algorithm is effective and easy to implement.  相似文献   

17.
基于观测器的受扰非线性系统近似最优跟踪控制   总被引:1,自引:0,他引:1       下载免费PDF全文
研究一类受扰非线性系统的最优输出跟踪控制问题.给出了有限时域最优输出跟踪控制律的近似设计算法.首先将求解受扰非线性系统最优跟踪控制问题转换为求解状态向量与伴随向量耦合的非线性两点边值问题,然后利用逐次逼近方法构造序列将其转化为求解两个解耦的线性微分方程序列问题.通过迭代求解伴随向量的序列,可得到由解析的线性前馈-反馈控制部分和伴随向量的极限形式的非线性补偿部分组成的最优输出跟踪控制律.利用参考输入降维观测器和扰动降维观测器,解决了前馈控制的物理可实现问题.最后仿真结果表明了该方法的有效性.  相似文献   

18.
The paper considers the output tracking problem for nonlinear systems whose performance output is also a flat output of the system itself. A desired output signal is sought on the actual performance output by using a feedforward inverse input that is periodically updated with discrete‐time feedback of the sampled state of the system. The proposed method is based on an iterative output replanning that uses the desired output trajectory and the sampled state to replan an output trajectory whose inverse input helps in reducing the tracking error. This iterative replanning exploits the Hermite interpolating polynomials to achieve an overall arbitrarily smooth input and a tracking error that can be made arbitrarily small if the state sampling period is sufficiently small and mild assumptions are considered. Some simulation results are presented for the cases of a unicycle and a one‐trailer system affected by additive noise.  相似文献   

19.
This paper discusses the input‐to‐state practical stability (ISpS) problem for a class of stochastic strict‐feedback systems which possess dynamic disturbances, unstructured uncertainties and unmodeled dynamics. The uncertain terms not only depend on the measurable output, but also are related with other unmeasurable states of the system. In the backstepping design, we use fuzzy logic systems directly to approach unknown control signals rather than unknown functions. A main advantage of the direct control method is that for an nth order strict‐feedback stochastic system, only four online parameters are needed. Moreover, it is proved that the closed‐loop system is ISpS in probability by using a stochastic small‐gain approach. Two simulation examples illustrate the effectiveness of the proposed scheme.  相似文献   

20.
In this paper, an adaptive output‐feedback control problem is investigated for nonlinear strict‐feedback stochastic systems with input saturation and output constraint. A barrier Lyapunov function is used to solve the problem of output constraint. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. To overcome the difficulties in designing the control signal in the saturation, we introduce an auxiliary signal in the n + 1th step in the deduction. By combining Nussbaum technique and the adaptive backstepping technique, an adaptive output‐feedback control method is developed. The proposed control method not only overcomes the problem of the compensation for the nonlinear term from the input saturation but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed‐loop system are semiglobally uniformly ultimately bounded. Finally, the effectiveness of the proposed method is verified by the simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号