首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
针对传统人体姿态解算算法中存在MEMS陀螺误差发散快的问题,提出一种基于微惯性测量单元( MIMU)及磁力计信息融合的姿态解算算法。该算法利用互补滤波结合PI调节控制完成陀螺零偏校正,然后在加速度计和磁强计的辅助校正下,通过EKF( Expand Kalman Filter)滤波器更新四元数法实现陀螺姿态解算。本算法采用MPU9150传感器模块完成测试实验,实验中对比分析了单独扩展卡尔曼滤波算法与本算法的滤波效果。实验结果表明,本算法能够有效地抑制陀螺的发散,实现稳定地输出高精度姿态数据。  相似文献   

2.
输电线路舞动事故频繁发生,针对舞动机理优化等相关研究对舞动特征参数的需求,提出基于MEMS六轴传感器的舞动特征参数幅值、频率监测的优化算法.算法设计了六轴传感器的标定及数据预处理方法;针对关键中间参数舞动姿态的解算,取代传统Mahony滤波,优化设计了基于自适应Mahony滤波的姿态解算方法,经优化后能更迅速、准确解算...  相似文献   

3.
为了解决磁罗盘使用过程中受到的磁干扰和加速度干扰影响测量精度问题。提出了基于陀螺辅助的磁罗盘抗干扰测量方法。选取磁罗盘姿态四元数微分程和传感器误差模型共同构建系统的滤波模型,由自适应卡尔曼滤波算法实现磁罗盘姿态估计,并借助于无磁转台对测量方法进行了实验验证,结果表明该方法是可有效实现磁罗盘的抗干扰测量,且能提高磁罗盘测量精度。  相似文献   

4.
针对当前无人机航姿系统对GPS信息依赖严重的特点,设计了基于MEMS ADIS16405传感器和数字信号处理器(DSC)TMS320F28335的微型惯性测姿系统。以MEMS传感器的角速度、重力加速度、航向信息,建立姿态四元数方程,解算出飞行器姿态。运用扩展卡尔曼滤波方法,消除MEMS陀螺漂移误差。DSC28335的硬件平台实现了四元数扩展卡尔曼滤波算法。转台仿真试验表明,漂移误差能在线最优估计和实时补偿,输出的航姿精度较高。该微型测姿系统具有较高的实用价值。  相似文献   

5.
磁罗盘误差分析与校准   总被引:1,自引:0,他引:1  
根据磁罗盘的工作原理,在详细分析了磁干扰和仪表误差等影响磁罗盘精度各因素的基础上,首先建立了一个用矩阵方程描述的磁罗盘方位指向输出的精确测量模型;接着证明了目前广泛使用的几种罗盘指向解算模型仅是上述精确测量模型在不同特定条件下的简化或泛化;随后基于不同姿态下的椭圆拟合算法对上述精确测量模型各个参数进行辨识,提出了全面校准磁罗盘方位指向的方法和步骤;最后用实例检验并比较了采用椭圆拟合模型和精确测量模型对罗盘方位解算的效果,验证了该精确测量模型的广泛适用性。  相似文献   

6.
详细介绍了磁罗盘的姿态解算原理,并分析了造成磁罗盘解算误差的主要因素,提出了基于最小二乘的36位置法,重点对其中的罗差以及制造误差中的零位误差和灵敏度误差进行了补偿修正;并用项目试验验证得出:当只进行零位误差和灵敏度误差修正时,磁罗盘的偏航角解算误差最大可达3°;而经过罗差补偿后,磁罗盘的偏航角解算误差可控制在0.5°以内;实验结果表明,经过补偿后,磁罗盘的解算精度明显提高,且成本低,使用简便,适用范围广。  相似文献   

7.
为了提高运动载体航向测量的精度,针对角速率陀螺误差随时间积累和磁罗盘易受外界磁干扰的问题,设计了磁罗盘、角速率陀螺和GPS航向信息融合方案.文中分析了磁罗盘、角速率陀螺和GPS的误差特性,进行了误差建模,构建了综合滤波模型,然后根据GPS可能出现的信息失落、遮挡等问题,采用一种能够检测磁罗盘低频磁干扰,并对干扰误差进行剔除的前置检测环节(PDL).通过仿真实验可知,本文研究的信息融合算法不仅能够有效地抑制磁罗盘高频磁干扰以及角速率陀螺的积累误差,同时也可很好地抑制磁罗盘的低频干扰误差,可以给运动载体提供较高精度的航向信息,且在GPS信号质量不好的情况下,基于PDL的补偿滤波可作为一种辅助方案,保证载体在较长时间内保持较高精度的航向.  相似文献   

8.
吕金锐 《计算机时代》2021,(5):29-32,37
为了实现对某弹载系统的姿态测量,提出一种基于FPGA+DSP的姿态测量系统的设计.系统采用FPGA作为逻辑控制核心,完成对MEMS传感器输出的陀螺加表数据的采集,并通过EMIF接口完成与DSP的数据通信.DSP完成对姿态信息的解算,并由FPGA通过RS422接口将更新后的姿态信息上传至上位机.系统选用地理坐标系作为导航坐标系,利用四元数法及Kalman信息融合算法对采集到的姿态信息进行解算.测试结果表明,该系统输出的姿态信息精度较好,总体角误差在0.5°以内.  相似文献   

9.
为解决MEMS惯性传感器的系统误差和环境干扰影响,捷联惯导系统(SINS)无法准确测量姿态的问题,设计了一种基于优化自适应无迹卡尔曼滤波(优化AUKF)的姿态解算方法。先对陀螺仪和加速度计的误差信号进行预处理,分别建立ARMA模型和一元高阶模型,使用经典Kalman滤波实现其过程,然后建立姿态角的微分方程,使用高精度的优化AUKF算法实现姿态角解算过程。跑车实验结果表明,该方法可以得到高精度的姿态角信息,抑制 MEMS陀螺漂移引起姿态角发散。  相似文献   

10.
根据微型航姿测量系统各传感器的特点,研究出了一种基于磁传感器输出的MEMS陀螺标定方法,并根据MEMS陀螺误差参数模型设计相应的补偿算法,分别对MEMS陀螺的零偏和标度因数误差进行了补偿。与传统标定方法相比,该方法实现简单,适用于现场标定。实验结果表明,该标定方法能够有效地提高MEMS陀螺测量精度,补偿后陀螺在静态条件下2分钟内,俯仰角漂移小于0.035°,倾斜角漂移小于0.15°,航向角的漂移小于0.2°。当陀螺三轴均有角速率输入时,在角速度小于25°/s情况下误差都能保持在±2°以内。  相似文献   

11.
崔铭 《传感技术学报》2011,24(9):1275-1278
针对微机电系统MEMS(Micro-Electro-Mechanical-System)陀螺仪的随机误差,引入了粒子滤波处理MEMS IMU的输出数据.借助于机动目标的Singer模型建立了系统状态方程,论文讨论了粒子滤波算法在MEMS IMU滤波处理的应用,详细描述了算法的推导过程.应用经典卡尔曼滤波和粒子滤波分别处...  相似文献   

12.
海洋传感器通常工作在复杂的磁场环境下,其姿态检测系统一般使用陀螺仪确定偏航角输出。针对短时部署的海洋传感器,分析了MEMS陀螺仪的偏航角漂移误差模型,并在对陀螺仪原始数据补偿的基础上,给出了随机漂移的拟合估值与补偿方法,以提高陀螺仪偏航角输出在一定时间内的精度。使用高精度平台进行实验,结果验证了该补偿校正方法的有效性。  相似文献   

13.
小型尾坐式飞行器航姿参考系统   总被引:1,自引:0,他引:1  
针对小型尾坐式飞行器姿态实时解算问题,研究了低成本的航姿参考系统(AHRS).由于MEMS惯性器件精度较低,设计了混合卡尔曼滤波器,以姿态四元数和陀螺随机漂移为状态变量,抑制了载体长时间飞行时陀螺漂移造成的累积误差.由于加速度计输出值在除重力加速度之外的附加加速度较大时不可信,完善了判断载体运动状态的方法,根据加速度计的实际输出,选择加速度值或者磁场强度作为观测量.实验结果表明,设计的算法在精度和计算效率方面都能满足控制系统的需求,更加适用于对实时性有较高要求的飞行器.  相似文献   

14.
在单一效应的MEMS振动驱动微能源的基础上,提出了一种MEMS压电-磁电复合振动驱动微能源器件。该微能源由八悬臂梁-中心质量块结构和永磁铁两部分组成,环境振动使中心质量块振动,PZT压电敏感单元由于压电效应产生电势差;同时中心质量块上集成的高密度线圈切割磁感线产生感应电动势,将压电转换与磁电转换相结合把振动能转换为电能。建立了该结构的数学模型并用有限分析软件Ansys12.0对该器件进行力学特性分析,最后对加工出的微能源进行性能测试。测试结果表明,该微能源谐振频率为8 Hz,易与环境发生共振;在共振条件下,施加1 gn 的加速度,器件压电发电开路输出电压峰峰值达154 mV,磁电发电开路输出电压峰-峰值达8 mV,有望为无线传感网络节点提供稳定的能源。  相似文献   

15.
目前数据手套大多采用机械式、光纤式或者图像识别等方法来获取手势姿态.基于MEMS传感器设计的数据手套利用MEMS传感器(三轴陀螺、三轴加速度计和三轴磁阻),根据惯性测量原理,采用基于四元数解算的扩展卡尔曼滤波信息融合方法来获得手指全姿态信息,克服了传统方法的局限性.其穿戴方便、运动自由度大、抗干扰能力强,且不受光线条件的约束.测试和实验的结果表明,基于MEMS传感器的数据手套稳定可靠,具有一定的创新性和实际应用参考价值.  相似文献   

16.
Zhang  Zengping  Chang  Dan  Jia  Bin 《Microsystem Technologies》2019,25(6):2515-2524

The non-driven MEMS gyro is a new kind of micromechanical vibratory gyro, which has no a driving structure itself. The gyro is installed on a rotating aircraft and utilizes the spinning of the carrier to obtain an angular momentum. When the carrier produces a transverse rotation, a periodic Coriolis force acts on the sensitive mass of the MEMS gyro to sense the transverse input angular velocity of the rotating carrier. In applications, we found that the MEMS gyro is subjected to a high shock when the carrier begins to launch. If the sensitive mass cannot return to balance, the gyro will not work properly. So the stability of the gyro is the key issue on whether it can properly work. In this paper, we have analyzed the stability of the MEMS gyro in details by using Lyapunov stability principle for the first time. Firstly, based on the designed structural principle of the MEMS gyro, by using Euler dynamic equation of a rigid body rotating around a fixed point, we have described the angular vibration of the sensitive mass of the gyro and obtained its motion equation. The motion is the second order system. Then, we have chosen an appropriate state vector and established a state space model in state space for describing the motion of the sensitive mass. In order to research the stability of the designed MEMS gyro by using Lyapunov stability principle, a Lyapunov function needs to be found. Therefore, we have built a quadratic function and proved that its Lyapunov matrix equation has a solution. The matrix solution is symmetric and positive definite. Thus, the found quadratic function is a Lyapunov function. According to Lyapunov stability principle, the designed MEMS gyro is asymptotically stable. Next, utilizing numerical calculation, we have done the simulation of the unit-impulse response. The response curve has shown that the system of the designed MEMS gyro can come back to the balance after 160 ms. Finally, for further verification, the MEMS gyro is fixed on the shock table to test. The shock wave is a half-sine with the strength of 60 g and the impulse width of 80 ms. The tested result has demonstrated that the output signal of the designed MEMS gyro can again come back to zero state position after 150 ms under shock disturbance.

  相似文献   

17.
MEMS SINS-GPS组合导航系统设计   总被引:3,自引:1,他引:2  
为实现满足中低精度要求的低成本导航系统,选用MEMS惯性传感器研制了捷联式惯性导航系统(SINS);针对MEMS惯性传感器噪声较大和惯性导航系统误差随时间迅速累积的问题,利用小波对MEMS陀螺信号进行了降噪处理,并采用SINS-GPS卡尔曼滤波组合导航系统以消除惯导系统的误差累积,输出较高精度的速度、位置信息.对SINS和组合导航系统进行了仿真实验,实验结果表明所建系统的长时间导航性能有一定改善.  相似文献   

18.
Wang  Ling  Zhang  Wei  Zhang  Zeng-ping  Liu  Yuan-an 《Microsystem Technologies》2018,24(4):1789-1793
Microsystem Technologies - To obtain accurate demodulation of the spinning frequency of MEMS carrier-driven gyro output signal, a frequency estimation algorithm combining the real and imaginary...  相似文献   

19.
MEMS微惯性测量组合标定技术研究   总被引:5,自引:1,他引:4  
在介绍MEMS微惯性测量组合组成结构的基础上,根据MEMS陀螺和MEMS加速度计的输出模型,提出并推导了一种MEMS微惯性测量组合标定方法。利用该方法标定微陀螺的基本思路是:设置转台以速率方式运行,并且确定合适的旋转角速率间隔,使微惯性测量组合每个轴向的陀螺仪分别敏感不同的角速率,然后通过一系列计算,求解出待标定的零点偏置电压、刻度因子、交叉耦合系数及其对应的安装误差角。标定加速度计的方法类似,不同之处是设置转台以位置方式运行。理论分析和实验结果表明,利用本文所介绍的这种标定方法能够准确地将MEMS微惯性测量组合的输出电压值转化为对应的角速度和比力信息,为后续精确的姿态解算和导航计算奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号