首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
大型客车车身振动和声学特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决客车车身振动导致乘员室产生低频噪声的问题,在对车身骨架结构、车室腔体进行模态特性分析和对车身结构进行频响分析的基础上,运用边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,提出对车身结构的修改建议。  相似文献   

2.
本文基于边界元法对车室进行声场分析和车身板块贡献度分析,进而找出车内噪声声压峰值处所对应的振动频率及该峰值下的“噪声源”板块,围绕车身减振降噪这一目标和车身设计轻量化的要求,基于响应面法建立阻尼复合结构的声辐射特性、模态频率和损耗因子与结构参数关系的数值模型,并对相应约束条件下的最佳阻尼复合结构参数匹配进行优化设计,综合研究内容对车身结构阻尼处理后取得了较好减振降噪效果。  相似文献   

3.
车身多层阻尼结构的振动特性及隔吸声特性是影响车室空腔声响应的重要因素。一个简化的车身模型用于研究车身多层结构对车内声压级的影响。通过这个模型,研究了车室空腔声响应与阻尼结构之间的关系。对车身阻尼结构进行了声-结构灵敏度分析,并对优化了阻尼层结构参数。  相似文献   

4.
首先建立客车结构噪声传递函数模型分析车内噪声峰值频率点。然后通过工作变形分析函数模型分析在这些噪声峰值频率点车身发生振动变形较大的位置。将这些振动变形较大的位置设置成噪声贡献面板,建立面板声学贡献量分析模型来确定这些面板对车内噪声水平贡献程度,确定板件对车内声压影响主次关系。该方法为车内噪声评估和车身面板优化提供有效理论指导。  相似文献   

5.
车身结构上的阻尼材料优化布置对车内振动和噪声控制有重要的意义。以某实车的白车身为研究对象,基于有限元法和边界元法对车内声腔进行声场分析和车身板块进行声学贡献量分析,找出车内场点噪声声压峰值频率及对应的贡献量较大的板块。进而基于白车身模态振型分析,对车身部件上的局部约束阻尼的敷设位置进行优化配置。分析了阻尼优化布置前后分别在悬置、前悬架和后悬架等不同位置处激励下的车内噪声,确认了降噪优化方案的有效性,并在实车上进行了验证。结果表明,对车身相关板块进行局部阻尼处理后,降低车内噪声2 d B(A),证明了该方法的有效性。  相似文献   

6.
提出一种基于模态分析的重卡驾驶室低频噪声控制方法,将其应用于一款在怠速工况下低频轰鸣噪声较严重的重型卡车上。首先对车内噪声的频谱特性进行测试分析,获取低频噪声的频率成分信息。然后对驾驶室白车身进行模态分析,确定噪声峰值频率与车身结构振动关系,并对该部位采用阻尼处理以降低结构辐射噪声。对处理后的试验车进行噪声评价测试,结果表明主要频率处的噪声峰值降低了5.4 dB(A)~7.5 dB(A),试验车驾驶室低频噪声得到有效控制。  相似文献   

7.
首先建立客车结构噪声传递函数模型分析车内噪声峰值频率点。然后通过工作变形分析函数模型分析在这些噪声峰值频率点车身发生振动变形较大的位置。将这些振动变形较大的位置设置成噪声贡献面板,建立面板声学贡献量分析模型来确定这些面板对车内噪声水平贡献程度,确定板件对车内声压影响主次关系。该方法为车内噪声评估和车身面板优化提供有效理论指导。  相似文献   

8.
为分析车室受路面随机激励作用产生的低频轰鸣声,采用白噪声过滤方法模拟路面随机激励,建立路面随机激励时域模型,根据拉格朗日原理建立整车七自由度振动动力学模型,利用Matlab建立受路面随机激励作用引起的悬架激励力仿真模型,并通过快速傅里叶变换得到悬架激励力幅频谱。利用Hypermesh建立车身结构有限元模型和空腔声场有限元模型,分别利用Nastran、Virtual.Lab计算车身结构模态和空腔声场模态,并采用模态叠加法计算声固耦合系统模态,最后施加悬架激励力载荷进行基于模态的耦合声学响应分析。分析结果表明:在频率20 Hz~50 Hz范围内,路面随机激励对车室低频耦合轰鸣声的贡献较大,以结构变形为主的耦合系统模态,受路面随机激励作用极易使车室空腔出现低频耦合轰鸣声。  相似文献   

9.
基于白车身模态实验的某SRV NVH研究   总被引:1,自引:0,他引:1  
试验模态分析技术是获得结构动态特性的一种重要方法。将试验模态技术应用到某SRV白车身的结构动态分析中,并通过对白车身模态和车内噪声优势频率的关联分析,确定该白车身模态分布对车内噪声峰值的影响,从而通过改变白车身的某些局部结构,降低车内噪声峰值,提高整车NVH水平。  相似文献   

10.
利用频谱分析和模态分析技术分析常用转速下车内噪声成分及车身各部分振动情况,确定阻尼片粘贴位置,并将条形阻尼结构应用于车内噪声控制。试验表明条形阻尼结构能有效抑制车辆行驶中的车身振动,降低车内噪声。  相似文献   

11.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

12.
为预测车室低频噪声,建立车身结构有限元模型和声场有限元模型,并使用网格映射方法将结构-声场有限元模型耦合。建立发动机激励动力学模型和路面随机激励动力学模型,利用Matlab/Simulink计算发动机悬置点激励力和悬架处激励力,并通过快速傅里叶变换得到激励力的幅频特性。加载发动机激励力和悬架激励力,在Virtual.Lab中进行声学响应分析和板件声学贡献分析,预测车室噪声并确定声压贡献较大的板件。最后通过板件厚度参数优化,有效地降低测点声压。  相似文献   

13.
为了降低车室低频噪声,采用对声学贡献较大的车室地板、后地板、前围板、顶棚、前车门内板及后车门内板的厚度参数为因子,以车身质量、车身模态频率、驾驶员头部处声压峰值和声压均方根值为响应,采用最优拉丁超立方试验设计方法采集样本数据进行因子空间设计。利用径向基神经网络方法,建立了4个响应关于6个因子的误差小、精度高的近似模型,并对所建立的近似模型进行误差分析。以驾驶员头部处声压峰值最小为目标函数,板件厚度参数为自变量,驾驶员头部处声压均方根值、车身质量和车身模态频率为约束条件。采用自适应模拟退火算法对板件厚度进行优化设计,其优化结果表明,驾驶员头部处最大声压峰值所在的频率158 Hz处的声压降低了4.45 d B,134 Hz处的声压峰值降低了5.47 d B,在其他声压峰值较高的频率处,测点声压均有不同程度降低,说明在满足约束条件同时,通过优化有效地降低车室空腔噪声,提高车辆的声学舒适性。  相似文献   

14.
介绍了有限元法和模态分析技术在某轻型汽车车身结构振动和乘座室空腔内部噪声测试分析上的应用,同时应用声-固耦合理论对车身结构与车内噪声耦合进行了研究,得出了相应的结论,为降低由结构振动所引起的车内低频噪声提供了结构修改和声学修改的依据。  相似文献   

15.
基于模态灵敏度分析的客车车身优化   总被引:1,自引:1,他引:0  
针对提高国产某轻型客车的乘坐舒适性,解决车内振动和噪声剧烈问题,本文首先基于有限元仿真和道路试验的阶次跟踪方法进行振动和噪声原因分析,所确定的原因为轮胎激励引起的车身结构共振。为避免共振,以白车身钣金件和骨架的厚度为设计变量,以提高白车身前两阶固有频率为目的,用模态灵敏度理论对白车身进行优化设计和灵敏度分析。然后结合各钣金件和骨架的模态灵敏度和质量灵敏度,设计最优的改进方案并进行试验分析。对比优化前后的试验结果,验证了该优化方案的有效性与合理性。  相似文献   

16.
民用飞机客舱噪声对乘客乘坐舒适性有较大影响。测试发现飞机客舱后部区域噪声频谱中出现了94 Hz和274 Hz的峰值噪声,为了确定噪声峰值的来源,首先对机体结构形式进行分析,对可能产生噪声的结构进行振动加速度测试。通过振动测试分析表明,发动机低压转子和高压转子振动传递至加强框结构引发了振动噪声。同时,针对噪声传递路径中的后储藏室壁板隔声特性进行建模和计算研究。声学有限元计算结果分析表明,后储藏室壁板对94Hz和274 Hz频率噪声的隔声能力弱,是客舱后部区域出现噪声峰值的重要原因。  相似文献   

17.
以某车型白车身为研究对象,首先建立白车身结构有限元模型并验证其有效性;随后通过对模型进行等效辐射声功率分析,得到白车身关键板件对车内的辐射噪声水平,并识别贡献量较大的结构位置;再根据分析结果构建白车身形貌优化模型并进行计算求解;最后将优化前后白车身等效辐射声功率进行对比,优化后辐射噪声在分析频段内整体降低,且最大响应峰值降低3.8 d B。研究结果表明,在汽车白车身设计阶段,基于等效辐射声功率分析和形貌优化设计可以有效地抑制结构的辐射噪声。该方法和思路可为工程领域相关的结构噪声分析和控制提供参考。  相似文献   

18.
在某SUV车型工程设计阶段,运用有限元法进行内饰车身地板响应点振动传递函数分析。与参考车型振动曲线对比,发现车身地板测点峰值大幅超出。通过模态贡献量及模态分析,诊断出振动传递函数峰值大幅超出是由地板局部模态引起。为提高地板局部刚度,以地板振动传递函数为目标函数进行形貌优化,设计出新的地板结构以降低测点振动峰值。制造样车后,对地板振动传递函数进行实车测试,验证仿真分析结果的有效性。研究结果表明,在车型工程设计阶段,基于形貌优化的振动传递函数分析可以有效应用于内饰车身地板减振结构设计中,降低后期实车抖动风险。  相似文献   

19.
针对车身优化的问题,采用频率响应灵敏度分析来降低车身结构的响应位移。在车身有限元模型的基础上计算频率响应,并求得驾驶员座椅支架处的响应位移曲线,从中找出某频率处的振动峰值;为了降低振动峰值,通过频率响应灵敏度分析选择合适的设计变量进行优化计算。优化后车身关键频率处的响应位移明显减小,提高乘坐的舒适性。  相似文献   

20.
以ZL50G轮式装载机为研究对象,进行噪声振动测试分析,获得噪声和振动频谱。通过理论分析和计算,确定噪声频谱图中各噪声峰值对应的噪声源及其传递路径,并同步采集主要噪声源部件的振动加速度信号。对振动和噪声信号进行频谱分析以及相干性分析,寻找噪声产生原因,得出结论。并且提出积极有效的减振、降噪措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号